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Abstract Real-world PLC software is modular and composed of many different function
blocks. Nevertheless, common approaches to PLC software verification do not leverage this
but resort to inlining, or analyse instances of the same function block type independently.

With the advent of constrained Horn clauses as the basis for automated program verifi-
cation, many state-of-the-art verification procedures build upon them. We illustrate how this
formalism allows for a uniform characterisation of PLC program semantics and safety goals,
derived from reactive systems safety foundations. Furthermore, we give a natural extension
of the resulting encoding which enables compositional reasoning about modular software.

Due to the cyclic execution of PLCs, an engineer’s mental model of a single function
block often exhibits state machine semantics – partitioning a block’s behaviour into different
modes of operation. We illustrate how such a mode space, and similar high-level knowledge,
can be integrated with our compositional characterisation.

We investigate the impact of each technique on the model checking performance by
characterising PLC software verification problems, both in a non-compositional and a com-
positional way that may incorporate mode transitions, and solving them with an SMT solver.
Evaluation of our prototypical implementation on examples from the PLCopen Safety li-
brary shows the effectiveness of both the chosen formalism and using high-level summaries.

Keywords Formal verification · Programmable logic controllers · Predicate abstraction ·
Constrained Horn clauses · Software safety · Industry automation

1 Introduction

Programmable logic controllers (PLCs) are devices commonly used for industrial automa-
tion tasks, e.g. monitoring the output flow of a tank and controlling according valves. Being
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used for repeatedly performing the same task, PLCs adopt a cyclic mode of execution, i.e.
reading inputs (typically connected to sensors), executing a program, writing outputs (typ-
ically connected to actuators) and starting all over again. Thereby, PLCs are a widespread
realisation of the theoretical concept of discrete event systems (DES), whose state changes
on the observation of discrete events. The major difference is that, due to inputs being read
only at the beginning of an execution cycle, non-simultaneous input changes may seem si-
multaneous to a PLC, but classical DES assumes events to occur in succession. While this
does not affect the verification procedures, a specification for a DES may need adaptation if
its semantics needs to be preserved in the context of PLCs.

PLC programs are usually written in the languages defined in the IEC 61131-3 standard.
Using the concept of function blocks, consisting of an interface definition and a body con-
taining the actual instructions that operate on this interface, programs can be modularised.
In particular, a program is a function block and may, in turn, call other function blocks.

Since PLCs are tailored to industrial automation, they often operate in environments
which require strong safety guarantees, and fixing bugs after commissioning entails sig-
nificant costs. To approach these requirements, formal verification of the PLC software is
desired and many successful applications of formal methods have been reported in the past.
However most work operates on model level, analysing drafts and models of the system to
be implemented, instead of the actual implementation (Ovatman et al., 2016). While such
analyses are necessary to find conceptual problems early in the development cycle, they do
not guarantee that the implementation will be free of bugs. Unfortunately, software level ver-
ification suffers from more limited scalability as it operates on more detailed and lower level
semantics (Darvas et al., 2016). A similar argument can be made for the even more faith-
ful but intractable hardware-level verification, which is why hardware-in-the-loop testing is
complementary to software verification. While the core problems of software verification
are undecidable and manifest themselves in the well known state space explosion problem,
many real-world programs can nevertheless be analysed if suitable abstractions and proce-
dures are utilised (Clarke et al., 2012).

In software that features several instances of the same component, or simply consists of
many components, a common source of blowup of the state space is a non-compositional
approach to verification. In such an approach there is no shared reasoning about different
instances of the same function block type, and every instance is analysed independently.
When PLC software verifiers, or their backends, do not support compositional reasoning but
the programs of interest are modular, it is common to clone every function block’s instruc-
tions for each of its instances, and potentially also inline all calls, that is replacing them by
the callee’s instructions. While these techniques get rid of the need for any compositional
or inter-procedural reasoning, and work well for smaller examples, they entail an increase
of the program size that is exponential in the function block nesting depth, and become
problematic in bigger applications.

In PLC software verification it often pays off to perform preliminary static analyses or
incorporate domain-specific information into the verification procedure to facilitate reason-
ing (Lange et al., 2013; Biallas et al., 2012). In contrast to general purpose software, in both
PLC software and most DES formalisms, communication occurs in between executions of
the program, or actions respectively. As a result, more complex tasks typically span several
execution cycles and state has to be kept track of, such that subsequent cycles resume op-
erating in the same mode. Accordingly, an engineer’s mental model of a function block is
often a state machine which exhibits different behaviours, depending on the current state,
or mode, it is in. We observe that many function blocks indeed exhibit such state machine
semantics, often featuring distinct modes for initialisation, errors and steps of computations.
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Most prominently, even PLCopen, an organisation which specialises in technical specifi-
cations around the IEC 61131-3, uses state machines to partition and relate the possible
behaviours of function blocks (PLCopen TC5, 2006).

1.1 Approach

Just as thinking of a block’s semantics in terms of different modes reduces the complexity
and helps engineers with reasoning on a higher level, so it may simplify reasoning for an
automatic verification procedure. For example, since it encompasses global information on
reachability of modes, it might help with avoiding analysis of behaviour that is irrelevant
w.r.t. the property of interest. Mode abstraction is a static analysis that, given the variable
which encodes a block’s mode, computes its mode space – an abstract transition relation
over the block’s modes.

To maximise the benefit of having such a block summary during verification, the pro-
gram semantics must be formalised in a way that allows for compositional reasoning, i.e.
facts learned about a function block type should not have to be relearned for its instances.
However, as observed in recent iterations of the annual Competition on Software Verification
(SV-COMP) and our previous work on PLC software verification (Bohlender et al., 2018;
Bohlender and Kowalewski, 2018b), classical model checking based on binary decision di-
agrams (BDDs) does not scale to software of relevant size, even though it can exploit com-
positionality to a certain extent. Instead, state-of-the-art verification procedures rely on sat-
isfiability modulo theories (SMT) solving (Beyer, 2019). Constrained Horn clauses (CHCs)
are both a particular class of SMT and a formalism for symbolic model checking, which has
proved successful and enabled new software verifiers to outperform established tools (Beyer,
2015). To leverage these advances, we adopt CHCs to characterise PLC program semantics,
high-level function block summaries, and safety goals in a uniform and compositional way.

1.2 Contributions

This work is an extended version of our conference paper (Bohlender and Kowalewski,
2018a), where we initially proposed mode abstraction and evaluated its impact on the model
checking performance in a CHC-based verification pipeline.

In contrast to the conference paper, the primary contribution of this work is a compre-
hensible approach to CHC-based PLC software verification in general, derived from reactive
systems safety foundations, and its extension to a compositional characterisation of program
semantics that integrates with high-level summaries, like those provided by mode abstrac-
tion. To this end,

– we provide the first comprehensive exposition of how to achieve a CHC-based charac-
terisation of PLC software safety, starting from state machine semantics,

– illustrate how this characterisation can be extended to enable compositional reasoning,
and how high-level knowledge can be exploited, using the example of mode abstraction,

– evaluate how both the compositional characterisation and integration with mode abstrac-
tion affect the verification time on benchmarks of varying difficulty,

– provide all artefacts needed to study the characterisation and reproduce our results.

Note that besides the implementation of mode abstraction, all aspects have been reimple-
mented and extended to improve understandability. In particular, the compositional charac-
terisation presented here arises naturally from the non-compositional one, the evaluation not
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only investigates the effect of mode abstraction but also the compositional reasoning on its
own, and the provided binaries also provide means to export several variants of characteri-
sations of the benchmarks, for self-study and experimentation.

1.3 Related Work

The endeavour of verifying PLC software goes back to Moon (1994) who used the SMV for-
malism (McMillan, 1993) to characterise programs written in the Ladder Diagram program-
ming language, starting off a line of research that seized on this approach (Ovatman et al.,
2016), e.g. to specifiy and verify reusable components (Ljungkrantz et al., 2010). Although
SMV targets hardware verification, and Ladder Diagram indeed is a circuit-like language
without control flow, most present-day PLC software verifiers still use variants of SMV
for model checking higher-level PLC programming languages (Darvas et al., 2016; Beck-
ert et al., 2015). Model-level verification, in contrast, employs a variety of model checkers
and formalisms, depending on the property of interest, e.g. time-based specifications require
modelling of timed automata, while concurrency and interlocking are analysed with variants
of Petri nets (Ovatman et al., 2016).

While different automata classes have previously been utilised as specifications, e.g. by
Frey et al. (2012), our work is different in that it uses automaton-like high-level function
block summaries to alleviate the complexity of verifying modular PLC software. While this
idea is related to predicate abstraction based verification (Biallas et al., 2013; Graf and Saı̈di,
1997) we employ a lightweight static analysis called mode abstraction to compute the ab-
straction, prior to running the actual verification procedure. This is possible since we do not
treat all variables equally but focus on variables that encode a block’s mode. This approach
is in line with the common theme of performing preliminary static analyses, or incorporat-
ing domain-specific knowledge, prior to running a generic software verification procedure
(Carter et al., 2016). In the overarching concept of CHC-based verification and exploiting
high-level knowledge, mode abstraction only serves as an example, as other constraints, e.g.
contracts (Quinton and Graf, 2008), can be integrated in a similar fashion.

The fact that not all variables of a program are used in the same way but exist for dif-
ferent purposes has been exploited in the past for choosing most suitable abstract domains
(Apel et al., 2013). While approaches that construct state machines from behaviour traces
seem related, they are unfit for summaries due to their under-approximating nature. Since
the proposal of mode abstraction in our conference paper, it has also been seized on in test
generation for PLC software (Simon and Kowalewski, 2018).

Since few work considers PLC programs that feature several instances of the same non-
trivial function block, the need for a formalism that enables compositional reasoning rarely
arises. Instead, popular options are inlining of calls at the expense of increasing the pro-
gram’s size (Bohlender et al., 2016; Lange et al., 2013), and cloning of the callee’s body for
every instance (Biallas et al., 2012; Darvas et al., 2013).

In line with this, we are not aware of any SMT-based PLC software verifier which makes
use of inter-procedural, compositional reasoning. However, the CHC formalism has already
been successfully applied in the context of compositional verification of general purpose
software (Bjørner et al., 2015), and non-compositional model checking of PLC software
(Bohlender et al., 2016). Starting from reactive systems safety foundations, this work pro-
vides a compositional characterisation of PLC software that differs from the one presented in
our conference paper (Bohlender and Kowalewski, 2018a), being simpler and more flexible,
but also more appropriate for the CHC solving backend (Komuravelli et al., 2015).
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1 FUNCTION_BLOCK ReqHandler
2 VAR_INPUT data :WORD; END_VAR
3 VAR DiagCode:WORD; END_VAR
4 VAR_OUTPUT res :WORD; END_VAR
5 // Body omitted ...
6 END_FUNCTION_BLOCK
7
8 PROGRAM Main
9 VAR_INPUT req:BOOL; in:WORD; END_VAR

10 VAR m :BOOL; h :ReqHandler; END_VAR
11 VAR_OUTPUT out:WORD; END_VAR
12
13 // On rising edge , forward data to handler h
14 IF (req AND NOT m) THEN
15 h(data:=in, res=>out);
16 ELSE
17 h(res=>out);
18 END_IF
19 m:=req;
20 END_PROGRAM� �
Listing 1 Example program that delegates requests to a handler

Although we focus on reachability checking, the general approach is not restricted to it
and can be adapted to more expressive logics (Beyene et al., 2016).

1.4 Outline

We commence with an example that motivates mode abstraction, illustrating why knowl-
edge of a function block’s mode space, or similar high-level knowledge, may simplify the
verification of certain properties in a compositional setting. Subsequently, Section 3 reca-
pitulates mode abstraction as a means to over-approximate a function block’s state machine
semantics, and the use of CHCs in the context of software verification.

The core contributions start with Section 4, where a CHC-based characterisation of PLC
semantics is derived from reactive systems safety foundations, which is then extended in
Section 5 to take advantage of the modularity of real-world PLC software. In Section 6 we
present our experimental results regarding the feasibility of the proposed characterisations
and conclude our work in Section 7.

2 Motivating Example

Consider the program from Listing 1, written in Structured Text, which implements a dele-
gation of requests to a handler, and serves us as a running example throughout this paper. It
features a main function block with two inputs req and in, for incoming requests and data
respectively. In every cycle, it calls the nested ReqHandler instance h and writes its results
to out. However, the input data in is only forwarded to h when a rising edge for req is
detected, which indicates a new request in need of processing.

The actual implementation of ReqHandler might be arbitrary complex, but is not rel-
evant for understanding the advantage of mode abstraction. It is therefore omitted in the
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“Idle”
DiagCode
=0x0000

“Processing”
DiagCode
=0x8000

“Error”
DiagCode
=0xC001

Fig. 1 Example mode space of ReqHandler
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)

out:=h.res

m:=req

Fig. 2 Main CFA of the example program

listing, but not ignored during analysis or verification. The important detail is that it exhibits
state machine semantics by using its DiagCode variable to track the current mode of opera-
tion. Among other things, its value encodes the current progress of handling the request and
the errors occurred.

Assume that we are interested in checking (i) whether all requests are guaranteed to be
processed in at most two execution cycles, or (ii) whether the processing may occur after an
error, even without reentering a reinitialisation or idle mode.

Without auxiliary information about the behaviour of the ReqHandler block, the un-
derlying verification procedure will have to derive all the necessary information on its own,
possibly running into code whose precise semantics are irrelevant w.r.t. the property of inter-
est and making the whole process unnecessary complex, potentially running out of time or
memory. Although modern verification procedures do not explore the reachable state space
naı̈vely but employ simplifications and abstraction refinement techniques, these are typi-
cally generic and are likely to be less effective than an abstraction which exploits domain
specifics. This aspect grows more severe when a program under analysis features several
instances of the same function block, but the verification procedure cannot reason about the
instances in a unified way, instead resorting to exploring their state spaces independently.

In contrast, let Fig. 1 illustrate an example mode space of ReqHandler. Here, the ver-
tices characterise sets of states that belong to the same mode, and the edges constrain how
an execution of the block may change the mode. If we were to determine such an abstraction
of the block’s state space, we could analyse the properties of interest in a more directed way.
For example, since there is no looping edge at the “Processing” mode, the block cannot stay
in this mode for more than one PLC cycle. As a result, proving (i) that every request can be
processed in at most two cycles amounts to proving the simpler property that, if there is a
request, the “Processing” mode will be reached in a single cycle. Alternatively, if we wanted
to prove (ii) that the request handler cannot reach the “Processing“ mode directly from an
“Error“ mode but has to start anew from the “Idle“ mode first, we would not even need to
consult a verification procedure as the mode space already tells us that this is true.



Leveraging Horn Clause Solving for Compositional Verification of PLC Software 7

3 Preliminaries

3.1 Program Representation

A PLC program consists of a set of (possibly nested) function block instances, which form
stateful functions over their member variables. Conceptually they are similar to closures,
or instances of classes from object-oriented programming with just one member function.
During compilation, the state and functional parts are decoupled by lowering the function
blocks to regular procedures with additional arguments for references to the state variables.
As a result, PLC programs can be modelled as a set of procedures over a set of variables or
memory locations.

We represent a procedure as a Control Flow Automaton (CFA) (Beyer et al., 2007) that
distinguishes between the input and the remaining variables.

Definition 1 (Control Flow Automaton) A CFA A = (X,Xin,(L,E), le, lx) is a directed
graph, where the vertices L are the program locations, with le, lx ⊆ L being the entry and exit
locations respectively. The edges E ⊆ L× Instr×L model the procedure’s instructions, and
their effect on control flow, over the vector of variables X. If A is the program’s main CFA,
the procedure’s input variables Xin ⊆ X will be treated as the program’s inputs.

Definition 2 (PLC Program) Following this, a PLC program is a pair P = (M,A ), where
A is a set of CFAs and M ∈A is the main CFA.

We restrict the presentation to a reduced set of instructions, featuring only assignments,
assumes and calls – a common approach that is known to come without loss of generality.

Fig. 2 shows the main CFA of our example program from Listing 1. While the solid
edges correspond to instructions, the dashed cycle-edge is not part of the CFA but was
merely added for the sake of exposition, connecting the exit with the entry location and
hinting at the cyclicity of the PLC. All of the instruction types occur in the example CFA.
The boolean expressions at the outgoing edges of location 0 are assumes, representing the
if-statement from line 14 of the example program. Assignments, like the m:=req at location
6, keep the notation from the source code (cf. line 19). Note that the calls’ implicit input and
output assignments have been lowered to regular assignments at locations 1,3 and 5, to allow
for simpler call semantics. Furthermore, the calls now refer to a CFA ReqHandler which is
derived from the corresponding function block type and operates on h’s member variables.

3.2 Mode Abstraction

Predicate abstraction (PA) was suggested by Graf and Saı̈di (1997) as a technique for com-
puting finite-state abstractions of possibly infinite state spaces, by grouping states that, given
a set of predicates, satisfy the same subset of these predicates. For example, given the predi-
cates {0≤ x,x≤ 10}, where x is a variable of the considered system, PA partitions the state
space into the states where x ∈ [−∞,−1], x ∈ [0,10] and x ∈ [11,∞]. However in most ap-
plications the predicates yielding useful paritionings are not known beforehand and may be
arbitrarily complex, requiring the use of computationally expensive SMT solving. Mode ab-
straction is a special case of PA where the predicates correspond to concrete valuations of
mode variables, cf. Fig. 1, and can therefore be computed automatically with a lightweight
static analysis. In the following we illustrate how mode abstraction can be implemented
upon a standard value set analysis (VSA) for CFAs (Beyer et al., 2007; Lange et al., 2013).
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Algorithm 1: ModeAbstraction(P, ι ,modeVar)
Input : program P = (M,A )

abstracted initial state ι : XM → D
identifying function modeVar : CFA→ X

Variables: VSA result ρM : CFA→ X→ D
mode transitions µ : CFA→ (Z→ 2Z)

1 ρM ← VSAcycl(M, ι) // Over-approximate observable values of all CFAs
2 µ ← /0 // Accumulates every CFA’s mode transitions
3 foreach A = (XA,Xin,(L,E), le, lx) ∈A do
4 xm← modeVar(A) // Pick mode variable
5 µA← /0 // Accumulates mode transitions of A
6 foreach src ∈ ρM(A,xm) do // Consider each mode as source
7 ιA← ρM(A) // Start from over-approximation
8 ιA← ιA[xm 7→ src] // with fixed source mode
9 ιA← ιA[x 7→ D> | x ∈ Xin] // and unconstrained inputs.

10 ρA← VSA(A, ιA) // Standard VSA of A
11 µA← µA ∪ (src,ρA(A,xm)) // Add found target modes
12 µ ← µ ∪ (A,µA)

13 return µ

In contrast to concrete program executions, a VSA operates on values from an abstract
domain D, such as intervals or sets of integers. Given an initial value ι(x) ∈ D for every
variable x, it propagates and modifies values along the CFA’s edges, considering nested
CFAs, until a fixed point is reached. This resulting mapping ρ assigns an abstract value
ρ(l,x) ∈ D to every variable x at every location l, including locations in nested CFAs, and
over-approximates the concrete values during any execution of the CFA that starts within
the provided initial values.

In the context of PLCs, we only care about the values at each CFA’s exit location, since
the changing of state variables during the execution is not observable. Thus, it is more
convenient to ignore the values at intermediate locations and treat ρ like a mapping from
every variable x of a CFA A to the over-approximated observable value ρ(A,x) ∈ D.

However, since the plain VSA operates on CFAs and our program representation does
not make the PLC cycle explicit, calling a VSA for some CFA A will only yield an over-
approximation of the possible values after a single execution of A. To consider an arbitrary
number of executions, an explicit edge from A’s exit lx to its entry le, which models the
reading of inputs, could be added. Instead, to keep the notion simple, we let VSAcycle denote
a VSA which considers the implicit cycle-edge in the suggested way. With this in mind,
mode abstraction can be understood as the combination of VSAs shown in Algorithm 1.

Before we can compute the mode spaces for each of the program’s CFAs, we have to
determine which modes exist in the first place. We do this in line 1 by invoking VSAcycle
on the program’s main CFA M, to acquire a mapping ρM , which over-approximates the
observable values of every CFA’s variables. In the context of our running example, this may
find that during any program execution, the handler’s DiagCode variable may only take
on values from the set ρM(ReqHandler,DiagCode) = {0,0x8000,0xC001}. The concrete
values will form the over-approximated mode space’s vertices, cf. Fig. 1.

In the next step, we iterate over the program’s CFAs to compute the transitions between
possible modes for each. The variables that implement mode semantics are typically known,
e.g. DiagCode in our example, but could also be derived automatically from the context they
occur in (Apel et al., 2013), e.g. they cannot be inputs, are only assigned constant values, and
typically do not occur in arithmetic operations. In the pseudocode we model this knowledge
through a function modeVar, which identifies a CFA’s mode variable xm (cf. line 4). We use
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the results ρM of the program’s VSA to determine the values xm might take, and consider
each of them as a concrete source mode src for the following nested VSAs in line 10.

The nested VSA’s goal is to determine possible successor modes of src, after a single
execution of the CFA A at any point in time. To this end, the nested VSA is initialised
with A’s over-approximated observable values ρM(A), but xm is initialised with mode src
and each input is set to the largest element D> of the abstract domain (cf. lines 7-9). Us-
ing non-deterministic inputs and reusing ρM , which encompasses behaviour that cannot be
observed in a single CFA execution, guarantees safe over-approximation of mode transi-
tions. In line 10, the result ρA of this CFA contains all the values xm may take after a single
execution starting in a particular mode src.

In the context of our running example, invoking this VSA on ReqHandler, initial-
ising the mode variable DiagCode with the previously determined source mode 0x8000,
we may find ρReqHandler(ReqHandler,DiagCode) = {0,0xC001} to be the possible succes-
sor modes. This outcome forms the two outgoing edges from the vertex labelled with the
predicate DiagCode = 0x8000 in Fig. 1, and of course depends on the actual implemen-
tation of ReqHandler. Performing such a VSA for every mode of a CFA yields an over-
approximation of all mode transitions.

3.3 Constrained Horn Clauses in Software Verification

Hoare logic was proposed by Hoare (1969) as a formal system for reasoning about the
correctness of programs. Later on, Blass and Gurevich (1987) made the case that existential
positive least fixed-point logic provides a logical match for Hoare logic. Solving CHCs
happens to correspond to this logic, and since standard proof rules from program verification
readily correspond to Horn clauses, they have been widely adopted as a basis for program
analysis (Bjørner et al., 2015).

In contrast to other formalisms and intermediate representations for program analysis,
a CHC instance is just a particular SMT instance, rendering CHCs a very flexible formal-
ism with access to SMT theories, e.g. enabling the modelling of non-trivial aspects like
references and pointer arithmetic via the theory of arrays, or incremental checking of more
complex specifications not feasible otherwise (Bohlender and Kowalewski, 2018b). In 2018,
the growing interest in CHCs even spawned the dedicated CHC solving competition CHC-
COMP, in addition to the renowned SV-COMP.

Definition 3 (Constrained Horn Clause) Given sets of variables V , function symbols F ,
and predicates P , a CHC is a formula

∀V p1(X1)∧·· ·∧ pk(Xk)∧ϕ︸ ︷︷ ︸
body

→ h(X), k ≥ 0, (1)

where ϕ is a constraint over F and V , Xi,X ⊆ V are possibly empty vectors of variables,
and pi(Xi) is an application of a predicate pi of arity |Xi|.

We use body to refer to the antecedent of the CHC and head to denote h. A CHC is called
a query if its head is free of P symbols and otherwise, it is called a rule. Following the
convention of logic programming literature, we use the shorthand notation

h(X)← p1(X1), . . . , pk(Xk),ϕ. (2)
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A set of CHCs is satisfiable if there exists an interpretation of the predicates that satisfies
each ϕ .

Intuitively, when characterising program semantics via CHCs, each pi represents an
unknown over-approximation of the values at a program location i, while a query defines a
property to be proven, and each rule corresponds to a transition in the CFA and gives rise to
a verification condition. Therefore, checking whether a program satisfies a safety property
amounts to establishing the satisfiability of CHCs that encode the corresponding verification
conditions, as shown in the following section.

4 Deriving a CHC-based Characterisation of PLC Software Safety

There are many ways to construct CHCs that characterise the checking of a partial correct-
ness property in a program. Common approaches are formulating an operational semantics
as an interpreter in a constraint logic program and specialise it for a given program (De
Angelis et al., 2014), or direct translation to Horn logic using a weakest liberal precondition
calculus (Bjørner et al., 2015). However, since we operate on the level of CFA, we approach
this by extending the conceptually more related approach of characterising safety properties
of a state machine, which the DES research community is also more familiar with.

A state machine, or hardware circuit, operates on a vector of state variables X, whose
values are possibly modified in every step of its execution. Let I(X) be the constraint that
expresses the set of initial states, and the possible steps be characterised by a transition rela-
tion T (X,X′) which relates the variables’ current and next values. Proving that all reachable
states satisfy some constraint safe(X) amounts to finding an inductive invariant inv(X), such
that the following CHCs are satisfied (Manna and Pnueli, 1995; Bjørner et al., 2015):

inv(X)← I(X) inv(X′)← inv(X),T (X,X′) safe(X)← inv(X) (3)

Note that while inv is a predicate from P , the others symbols are functions from F .

4.1 Lifting of CHCs to PLC Software

Due to the cyclic execution of a PLC, the changing of state variables during the execution
of a program is not observable by the environment. The only observable values are those
which the variables take at the end of a PLC cycle, i.e. when the output variables provide
the connected actuators with new values. Accordingly, and in contrast to state machines,
specifications for PLC software typically refer to observable states only, and a safety con-
straint or invariant may be violated during program execution, as long as it still holds for the
observable states.

Therefore, we cannot use the CHCs from (3) in their current form, but must adapt T to
reflect the fact that specifications treat the whole PLC cycle like a single step:

cyclex(X)← I(X) cyclex(X
′)← cyclex(X),Tcycle(X,X′) safe(X)← cyclex(X) (4)

In this context, the predicate cyclex will correspond to the observable states at the exit of
a PLC cycle, and Tcycle has to characterise the semantics of one cycle-step of the PLC. If,
given a characterisation of initial values I(X), these CHCs are satisfiable, then the found
interpretation for the predicate cyclex over-approximates the program’s observable states
and proves that none of them violates the considered constraint safe(X).
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While the approach is sound, it is generally not possible to state Tcycle if the program
contains loops – otherwise the halting problem were decidable. Therefore, the following
sections focus on how additional CHCs can be used to characterise the semantics of a single
execution of the program, without having to compute Tcycle explicitly.

4.2 Monolithic Program Semantics

In the following, let our program be given by P=(M,{M}), where M =(X,Xin,(L,E), le, lx)
is the monolithic main CFA resulting from inlining all calls. To capture a PLC’s cycle-step
semantics Tcycle through a set of CHCs, these have to encompass the reading of new input
values at the beginning of a cycle and the subsequent execution of the main CFA M.

4.2.1 Reading Inputs

We can make this sequence explicit by introducing another vector of variables X′′ and using

cyclex(X
′′)← cyclex(X),

∧
x∈X\Xin

x′ = x,TM(X′,X′′) (5)

instead of the middle CHC from (4). Here, the reading of inputs is expressed by keeping
the values of all non-input variables X\Xin while leaving the others unconstrained, and TM
relates this valuation X′ at the beginning of the main CFA execution with the one at its end.

Alternatively, instead of introducing X′′, we can also express each step of this sequence
in terms of separate CHCs

cyclee(X
′)← cyclex(X),

∧
x∈X\Xin

x′ = x cyclex(X
′)← cyclee(X),TM(X,X′) (6)

by letting a new predicate cyclee characterise the intermediate values at the entry of the PLC
cycle, i.e. right after reading the inputs. What remains to be determined is a characterisation
of M which avoids the explicit computation of TM .

4.2.2 CFA Semantics

Similar to the introduction of a new predicate to characterise the values at the beginning of
a cycle, we can capture the semantics of M by introducing a predicate Mi(X) for each i ∈ L,
to characterise the possible valuations at every vertex of M.

In doing so, the characterisation cyclee of valuations at the beginning of the PLC cycle
constrains the valuations at the entry of M, that is Mle , and the characterisation Mlx of valu-
ations at the exit of M constrains cyclex. This link is expressed through the following rules:

Mle(X)← cyclee(X) cyclex(X)←Mlx(X) (7)

While Mle is constrained by cyclee, the reachable valuations at other vertices of M de-
pend on both the valuations at predecessor vertices and the connecting edges’ instructions.
Therefore, we acquire a characterisation Ml′ of valuations at location l′ by creating corre-
sponding rules for every edge (l, instr, l′) ∈ E:

Ml′(X′)←Ml(X),Tinstr(X,X′) (8)
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where Tinstr expresses the semantics of instr in an appropriate logic (cf. Section 4.2.3). Due
to this inductive definition of the CFA semantics we avoid having to determine TM explicitly.

Given a characterisation of initial values I(X), the resulting set of CHCs needed for
reasoning about a program’s compliance w.r.t. a safety specification safe(X), amounts to:

cyclex(X)← I(X) (9)

cyclee(X
′)← cyclex(X),

∧
x∈X\Xin

x′ = x (10)

Mle(X)← cyclee(X) (11)

Ml′(X′)←Ml(X),Tinstr(X,X′) for each (l, instr, l′) ∈ E (12)

cyclex(X)←Mlx(X) (13)

safe(X)← cyclex(X) (14)

Note that in the context of PLCs, we usually do not deal with a set of initial states but
have a defined vector of initial values X0. Therefore, in practice, we use the fact cyclex(X0)
instead of the more general CHC (9).

4.2.3 Instruction Semantics

The logical characterisation Tinstr(X,X′) of both assignments and assumes can be derived
from their standard strongest postcondition predicate transformers (Dijkstra and Schölten,
1990; Bohlender et al., 2018), i.e.

Tv:=expr(X,X′) := (v′ = expr∧
∧

x∈X,x 6=v

x′ = x) (15)

Texpr(X,X′) := (expr∧
∧
x∈X

x′ = x) (16)

Note that the big conjunctions guarantee that assignments change only the value of v, and
assumes do not modify any value but merely require an expression expr to hold.

For example, if m := req from Fig. 2 is the instruction of interest, its characterisation
over the sets X,X′ is

m′ = req∧
∧

x∈X,x 6=m

x′ = x. (17)

5 Compositional Characterisation

While the characterisation from Section 4 already gives access to the state-of-the-art veri-
fication procedures implemented in CHC solvers, it arises from a monolithic program rep-
resentation. Such a non-compositional characterisation is devoid of the modularity of the
original program, which can therefore not be exploited. In addition, the inlining may re-
sult in a significant increase of the program size, potentially causing a state space explosion
during the following verification phase.

In the compositional setting, the program under analysis has call instructions and is
therefore given by P = (M,A ), where M = (X,Xin,(L,E), le, lx), and each CFA A ∈A cor-
responds to a function block type of the PLC program, i.e. not to a function block instance.
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In the following sections, we present a compositional characterisation of the program
semantics, continuing from the set of CHCs that we had constructed in Section 4.2.1:

cyclex(X)← I(X) (18)

cyclee(X
′)← cyclex(X),

∧
x∈X\Xin

x′ = x (19)

cyclex(X
′)← cyclee(X),TM(X,X′) (20)

safe(X)← cyclex(X) (21)

5.1 Concept

To enable truly compositional verification and efficient incorporation of function block sum-
maries into CHC-based verification, the characterisation should reason about a CFA’s se-
mantics at function level, i.e. in terms of I/O-relations, and enable reuse of results in between
analyses of different instances.

We approach this by extending the predicates Mi from Section 4.2.2, which charac-
terise the possible valuations at program location i of the CFA M, to capture the pos-
sible valuations at that location if M had been entered with a particular valuation. That
is, we introduce a predicate Ai(XA,X′A) for every program location i ∈ LA of every CFA
A = (XA,XA,in,(LA,EA), lA,e, lA,x), to express a valuation X′A at location i that is transitively
reachable when entering A with XA. In doing so, each AlA,x(XA,X′A) represents an unknown
over-approximate summary of a procedure, relating the states before and after a call of A,
and each rule gives rise to a modular verification condition for one procedure (Komuravelli
et al., 2015). Furthermore, such a predicate can be augmented with another summary which
constrains the pre- and post-valuation, XA and X′A respectively (cf. Section 5.3).

In the following sections, we adapt and extend the non-compositional CHCs to make the
predicates Ai express the intended semantics. Note that as a result, we will be able to replace
TM(X,X′) from (20) with Mlx(X,X′) since their semantics will coincide.

5.2 CFA Semantics

In the non-compositional characterisation, cyclee constrained the predicate Mle(X), which
expressed the possible valuations the main CFA can be entered with (cf. Section 4.2.2).
However, with Mle(X,X′) now being supposed to characterise the valuation X′ at le that is
reachable from X at le, X and X′ have to be equal:

Mle(X,X)← cyclee(X) (22)

Having established this link, we can now start constraining the predicates Mi for the remain-
ing program locations i∈ L through rules that inductively build upon it. Note that there is no
need to lift the non-compositional rule for cyclex, to link the variables’ values at the exit of
the main CFA and PLC cycle end, since this is already covered by (20). Since the semantics
of every CFA A is formalised in the same way, we do not treat the case A = M separately
but refer to A = (XA,XA,in,(LA,EA), lA,e, lA,x) in the following.

With the non-compositional CHCs, a predicate for program location i was constrained
by the predicates of predecessor locations and the connecting instructions. This is also the
case in the compositional characterisation, yielding rules for every edge (l′, instr, l′′) ∈ EA:

Al′′(XA,X′′A)← Al′(XA,X′A),Tinstr(X′A,X
′′
A) (23)
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That is, if it is possible to reach a valuation expressed by X′A at location l′, when entering the
CFA with XA, and an there is an instruction that leads from l′ to location l′′ that transforms
the values into X′′A, then Al′′ should relate the entry valuation XA with X′′A. Note that in the
compositional setting, we must also provide the characterisation Tinstr of a call instruction
(cf. Section 5.3).

At this point, all of the relations AlA,e(X,X′) would be empty, except for Mle , since there
are no rules to derive appropriate X and X′. For the main CFA M this is not an issue, since
Mle is given through cyclee, and the rules for the remaining Mi are based on this non-empty
relation. So while we have characterised the intra-procedural semantics, we are still missing
some inter-procedural semantics, i.e. the rules that constrain AlA,e depending on where A is
called from.

Due to the hierarchical nature of PLC software, if a function block instance b of type
B is called, the callsite is within some parent function block instance a of a type A, and the
memory locations of b are a subset of those of a. Accordingly, the valuation X′b that can
reach lB,e is a subset of the valuation X′A at a callsite lc, yielding a CHC similar to (22):

BlB,e

(
X′b,X

′
b
)
← Alc(XA,X′A) (24)

where X′b ⊆ X′A are the primed variables of instance b.
Given a characterisation of initial values I(X), the resulting set of CHCs needed for

compositional reasoning about a program’s compliance w.r.t. a safety specification safe(X),
amounts to

cyclex(X)← I(X) (25)

cyclee(X
′)← cyclex(X),

∧
x∈X\Xin

x′ = x (26)

Mle(X,X)← cyclee(X) (27)

cyclex(X
′)← cyclee(X),Mlx(X,X′) (28)

safe(X)← cyclex(X) (29)

and the addition of the following CHCs for each A = (XA,XA,in,(LA,EA), lA,e, lA,x) ∈A :

Al′′(XA,X′′A)← Al′(XA,X′A),Tinstr(X′A,X
′′
A) for each (l, instr, l′) ∈ EA (30)

BlB,e

(
X′b,X

′
b
)
← Alc(XA,X′A) for each call (lc,B(Xb)), l′) ∈ EA (31)

where X′b ⊆ X′A and B = (XB,XB,in,(LB,EB), lB,e, lB,x) ∈A is the called CFA. For clarity, a
concrete instantiation of these CHCs for our running example is provided in Appendix A.

5.3 Call Semantics

The characterisation of calls is based on the predicates BlB,x that we introduce for every CFA
B. Given a call B(arg) to a CFA B with the variables arg to operate on, its characterisation
within a parent CFA A is given by

TB(arg)
(
XA,X′A

)
:= BlB,x(arg,arg′)∧

∧
x∈XA\arg

x′ = x ∧ SB(arg,arg′) (32)

where arg⊆XA, and the predicate BlB,x captures which output valuation arg′ can be reached
given the input arg. The big conjunction guarantees that all variables of XA that are not used
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as arguments keep their values – they are not visible to the callee. This is also the place
where additional information about the callee can be exploited, by restricting the behaviour
that needs to be analysed by the underlying solver, through a constraint SB(arg,arg′).

To get a more intuitive understanding of the characterisation of calls, consider the call
ReqHandler(h.data, h.DiagCode, h.res) from our running example (Fig. 2). The
call occurs in the context of the main CFA, so

X = (req, in,m,h.data,h.DiagCode,h.res,out), (33)

and X′ contains the primed variants of these variables. Given the callee’s exit location
lReqHandler,x, the call can be characterised as follows, if no summary is available:

ReqHandlerlReqHandler,x
(h.data,h.DiagCode,h.res,

h.data′,h.DiagCode′,h.res′)

∧ req′ = req∧ in = in′∧m′ = m∧out′ = out

(34)

In contrast, if we wanted to exploit our knowledge of the mode space (cf. Fig. 1), we would
have provided the CHC solving procedure with the following summarising constraint that
expresses all mode transitions:

(h.DiagCode = 0→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0x8000)

∧(h.DiagCode = 0x8000→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0xC001)

∧(h.DiagCode = 0xC001→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0xC001)

(35)

For example, if a ReqHandler instance is in the mode characterised by DiagCode = 0,
h.DiagCode′ = 0∨h.DiagCode′ = 0x8000 encodes that calling this instance will cause it to
either stay in that mode, or end up in the one characterised by h.DiagCode′ = 0x8000.

6 Experiments

6.1 Implementation

We implemented Java-prototypes of mode abstraction and both the non-compositional and
the compositional approach to CHC-based verification, using the publicly available SMT
solver Z3 (de Moura and Bjørner, 2008) and the ARCADE.PLC platform for analysis of
PLC software (Biallas et al., 2012). While ARCADE.PLC itself does not implement meth-
ods for CHC-based verification, we use its compiler frontend to acquire CFAs of PLC pro-
grams written in Structured Text, and build upon its VSA to implement mode abstraction.
In contrast to the conference paper, the employed version of Z3 (v4.8.1) defaults to the
SPACER-engine (Komuravelli et al., 2015) for solving CHCs, superseding PDR (Eén et al.,
2011; Hoder and Bjørner, 2012), and is tailored to compositional reasoning.

Unlike the presented characterisation of single instructions, our implementation follows
the common approach of characterising large-blocks of instructions (Beyer et al., 2009).
However, for self-study and experimentation, the supplied artefacts allow for generation of
CHCs in various block encodings.
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6.2 Benchmarks

PLCopen is an organisation which drives standardisation and technical specifications in au-
tomation. The PLCopen Safety library is a collection of such specifications. We experi-
mented with two groups of PLC programs from this library. Programs from (PLCopen TC5,
2006) are single modules implementing particular safety concepts, while (PLCopen TC5,
2008) features user examples which combine these into larger applications. Most of these
programs, or their components, exhibit mode semantics through DiagCode variables and
address domain-specific problems, e.g. how to realise a safe emergency shutdown.

Since publication of the conference paper, the number of compositional programs and
specifications has increased, such that the new benchmark subsumes the old one, and the
sizes of these programs range from 120 to about 1500 program locations in the main CFA
with inlined calls. The (invariant) specifications we use were either already formulated by
PLCopen or derived from their technical specifications.

All experiments were performed on a 64 bit Linux machine with 3 GHz, 8 GB of RAM
and a timeout of 1000 s. They can be reproduced with the artefacts available on our website1.

6.3 Discussion

In the following, we discuss the results of our experiments with the 64 verification tasks, of
which 23 concerned the elementary modules from (PLCopen TC5, 2006), while the remain-
ing 41 referred to composite applications from (PLCopen TC5, 2008).

6.3.1 Non-compositional vs. Compositional Reasoning

Fig. 3 illustrates how much time the solving of both the non-compositional and the com-
positional CHCs took for each verification task. To facilitate the analysis of the effects of
using a compositional characterisation, every data point corresponds to one verification task
and its coordinates put the execution times of both approaches in relation. As a result, a data
point on the line through the origin means that using the compositional formulation has no
impact, and the dashed lines correspond to a change by an order of magnitude. Note that the
time for generating the CHCs is negligible and factored out in the experiments, i.e. to allow
for a direct comparison we only measure the runtime of the CHC solver.

We find that even with the non-compositional characterisation, Z3 already manages to
to solve 38 verification tasks, which in particular subsume all tasks on elementary modules.
As expected, all 26 timeouts occur for specifications concerning the composite applications.
Despite the timeouts, this already outperforms previous approaches based on CEGAR and
PA (Biallas et al., 2012, 2013), which struggle even with some of the elementary modules,
e.g. PLCopen’s SF MutingSeq.

While classical model checking based on decision diagrams is common in the DES
community, and a good choice for model-level verification (Ovatman et al., 2016), it is not
competitive with solving the non-compositional characterisation of our verification tasks.
As explicated in Section 1.1, experience shows that decision diagrams rarely scale to the
problems arising in software verification, and only work well for restricted classes of pro-
grams, e.g. where “variables are only used in equality expressions [..] and not with other
arithmetic operators” (Beyer and Stahlbauer, 2014). Our previous work on an overlapping

1 https://arcade.embedded.rwth-aachen.de/jdeds18_chc.tar.gz

https://arcade.embedded.rwth-aachen.de/jdeds18_chc.tar.gz
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Fig. 3 Time [s] spent on verification of each task, using non-compositional and compositional reasoning

set of programs confirms this (Bohlender and Kowalewski, 2018b; Bohlender et al., 2018),
finding BDDs to perform worse than SMT-based alternatives, only managing to explore the
state space of few elementary modules, and running out of resources most of the time.

A direct comparison with the SMV-based verification of Darvas et al. (2016) is diffi-
cult, as their tool is not publicly available. However, they rely on NUXMV (Cavada et al.,
2014), which is the latest symbolic model checker for the SMV formalism, and publicly
available for academic purposes. Besides BDD-based reasoning, which is not sufficient for
our verification tasks, it also implements PDR for checking reachability properties. Given
that Z3’s SPACER is an extension of PDR, it is not surprising that reachability checking for
a SMV-based characterisation was found to perform similarly to satisfiability checking of
our non-compositional characterisation (Bohlender and Kowalewski, 2018b). Therefore, an
SMV-based approach like (Darvas et al., 2016), will at best perform comparable.

As soon as the properties of interest become more complex, even NUXMV will resort to
the unfeasible BDDs. In contrast, CHCs are just a class of SMT, so more generic but still
feasible procedures for the property of interest may exist, e.g. to express restart robustness
(Bohlender and Kowalewski, 2018b). Furthermore, since NUXMV is the only modern model
checker for SMV, but a closed-source standalone tool, it is unfeasible to express uncommon
specifications in SMV or build competitive procedures upon NUXMV’s. Both was found to
be practical with CHCs (Bohlender and Kowalewski, 2018b; Bohlender et al., 2016).

Let us now return to Fig. 3, and consider the data points’ y-coordinates, which corre-
spond to the measured CPU times for solving each task’s compositional characterisation,
using the same engine and parameters as for the non-compositional one. For the simpler
tasks, that take less than 3 s to analyse, there is no significant difference. If any, the non-
compositional characterisation is slightly faster for some of them, since the overhead that
the compositional solving introduces is not amortised that quickly.

However for the modular and more complex programs, compositional reasoning yields
improvements by more than an order of magnitude. In line with this, the approach also
halves the number of problematic instances, running out of resources only 13 times. Note
though that, unlike in the non-compositional case, only 2 of these are timeouts. The running
out of memory is due to SPACER being tailored towards compositional reasoning by creating
and checking local reachability queries for individual procedures, and also maintaining both
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may- and must-summaries for them, which requires more memory than non-compositional
reasoning.

6.3.2 Compositional Reasoning with Mode Abstraction

Similar to the diagram in Fig. 3, the plots in Fig. 4 visualise the impact of performing mode
abstraction, and solving the accordingly augmented CHCs, on the total verification time.

The first plot compares non-compositional reasoning with solving summary-augmented
CHCs. The experimental results look similar to Fig. 3 but with all data points shifted in
favour of the non-compositional approach. This shift originates in the time needed to com-
pute the mode abstraction, and while resulting in a significant decrease of the overall veri-
fication performance for small or non-modular programs, this overhead becomes negligible
for the more complex ones. However based on this diagram alone, it is difficult to judge
whether the incorporation of mode abstraction pays off, or results in similar verification
performance.

To allow for a direct comparison, the second plot in Fig. 4 relates both compositional
approaches. As in the previous plot, we can see that the overhead becomes negligible once
the verification tasks become so complex that they cannot be solved within 10 s, and the
clustering around the line through the origin shows that most of the considered specifications
do not profit significantly from the information that mode abstraction provides.

However we also see that in some cases, mode abstraction reduces the runtime by more
than an order of magnitude, even enabling the checking of previously problematic proper-
ties. The combination of compositional reasoning and mode abstraction manages to halve
the number of cases where the verification procedure runs out of resources once more, leav-
ing only six verification tasks unsolved.

Overall we observe that the overhead of performing mode abstraction is insignificant
w.r.t. the time needed for solving the resulting CHCs, while potentially improving the per-
formance significantly when used in the context of more complex, composite applications.

Since our experiments aimed to demonstrate the feasibility of using CHCs, and illustrate
the impact of using different characterisations, we were less interested in the qualitative re-
sults, i.e. whether the implementations comply with the specifications. Nevertheless, the
benchmark covered all possible outcomes, as we found that of the 58 specifications that
could be checked, 40 were proven to have been implemented correctly, and in 18 cases vio-
lations were found. Our experiments also suggest that proving safety, i.e. finding a solution
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to the CHCs, tends to be more difficult than finding counterexamples, as we measured the
slowest proof of violation to occur at the 33 s mark, while proofs of safety took up to 292 s.
Beyond that, no patterns were observed, and the measured times for proofs of safety were
found to range over all orders of magnitude.

7 Conclusion

In recent years, CHCs have been widely adopted in the software verification community as
a basis for program analysis and symbolic model checking. Since proof rules from program
verification readily correspond to Horn clauses, many state-of-the-art procedures build upon
them, and being just a particular class of SMT, CHCs form a flexible formalism with access
to SMT theories.

To the best of our knowledge, the PLC verification community has not yet taken ad-
vantage of this development, as classical model checking procedures based on decision dia-
grams are in fact a good choice for DES, and verification at an abstract model-level. While
these methods may also be applicable to restricted classes of programs, the common ap-
proaches to PLC software verification struggle with the considered PLC software, which is
modular and composed of many function block instances.

Therefore, we provided a comprehensive exposition of how a CHC-based characterisa-
tion of PLC software safety can be derived from reactive systems safety foundations. While
the basic characterisation is devoid of the modularity of PLC software, we found that lever-
aging CHC solving to perform the symbolic model checking is competitive with state of the
art in PLC software verification. The non-compositional characterisation forms a simple but
capable basis for extensions that are not feasible via common methods, e.g. verification of
restart robustness (Bohlender and Kowalewski, 2018b).

To also exploit the modularity present in PLC software, the basic characterisation was
extended to decouple function and data, and enable compositional reasoning during verifi-
cation, by treating function blocks in terms of relations between entry and exit states. The
resulting characterisation naturally integrates with additional information about a function
block’s behaviour, such as mode spaces, which may improve the verification performance.

While our results suggest that both compositional reasoning and integration of high-
level information pay off, some verification tasks remain problematic, and in need of more
elaborate approaches. To this end, it seems worthwhile to integrate our characterisation with
auxiliary information from static analyses, and other approaches to simplify the CHCs in
preprocessing (Bjørner et al., 2015), to alleviate the burden on the CHC solver.
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A Compositional Characterisation of the Running Example

In the following we explicitly instantiate the characterisation from Section 5, that is clauses (25)-(31), using
the example CFA from Fig. 2, including the higher-level knowledge provided by the mode abstraction (cf.
Fig. 1). Note that for the sake of exposition, and lack of bit-operations in our example, we do not resort to the
theory of fixed-size bit-vectors but capture the program semantics over booleans and integers. A characteri-
sation over bit-vectors can and has been used in previous work (Bohlender and Kowalewski, 2018b).

Let h.res = out be an example invariant the program should be compliant with, stating that the outputs
of both function blocks coincide in all observable states. The characterisation can be split into three parts:

1. the PLC cycle, calling the program’s main function block, is characterised by clauses (25) to (28),
2. the query for safety, characterised by clause (29),
3. and each CFA’s characterisation, as given by clauses (30) and (31).

Similar to Equation 33, the variables of the occurring CFA instances are given by

X = (req, in,m,h.data,h.DiagCode,h.res,out) Xh = (h.data,h.DiagCode,h.res) (36)

and X′,X′h, or X′′,X′′h , are further variants of these variables that are primed once or twice, respectively, i.e.

X′ =
(
req′, in′,m′,h.data′,h.DiagCode′,h.res′,out′

)
X′h =

(
h.data′,h.DiagCode′,h.res′

)
(37)

A.1 PLC Cycle

Since Listing 1 provides no explicit initialisation, all variables are initialised to 0 or false (cf. IEC 61131-3).
Instantiating clauses 25-28 yields the following constraints:

cyclex(X)←

(
req = false∧ in = 0∧m = false∧h.data = 0∧h.DiagCode = 0

∧ h.res = 0∧h.out = 0

)
(38)

cyclee(X
′)← cyclex(X),

(
m′ = m∧h.data′ = h.data∧h.DiagCode′ = h.DiagCode

∧ h.res′ = h.res∧h.out′ = h.out

)
(39)

Main0(X,X)← cyclee(X) (40)

cyclex(X
′)← cyclee(X),Main7(X,X′) (41)

Here, 7 is the exit location of the main function block Main, and the predicate Main7(X,X′) characterises the
possible values X′ after a single execution of the main CFA when started with values X.

A.2 Query

Instantiating clause 29, we require all observable states to satisfy h.res = out:

h.res = out← cyclex(X) (42)

A.3 CFA Semantics

While the running example states an implementation of the main function block Main, no concrete implemen-
tation of the ReqHandler block is provided, but only its interface. Accordingly, no sensible characterisation
of its body can be provided here, but should be easy to establish given a concrete CFA. Every CFA is char-
acterised independently by instantiating clause (30) for every edge of the CFA, and (31) for every call-edge.
For reference, complete characterisations of every benchmark are provided with the artefacts of this work.

In the following we characterise Main (cf. Fig. 2) by sequentially instantiating (30) for its assume-,
assign-, and call-edges. The instantiation for the assumes (0,req∧¬m,1) and (0,¬(req∧¬m),4) yields:

Main1(X,X′′)←Main0(X,X′),req′ ∧¬m′ ∧X′′ = X′ (43)

Main4(X,X′′)←Main0(X,X′),¬
(
req′ ∧¬m′

)
∧X′′ = X′ (44)
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and the assignments (1,h.data := in,2),(3,out := h.res,6),(5,out := h.res,6) and (6,m := req,7) become:

Main2(X,X′′)←Main1(X,X′),h.data′′ = in′ ∧

 req′′ = req′ ∧ in′′ = in′ ∧m′′ = m′

∧ h.DiagCode′′ = h.DiagCode′

∧ h.res′′ = h.res′ ∧h.out′′ = h.out′

 (45)

Main6(X,X′′)←Main3(X,X′),out′′ = h.res′ ∧

 req′′ = req′ ∧ in′′ = in′

∧ m′′ = m′ ∧h.data′′ = h.data′

∧ h.DiagCode′′ = h.DiagCode′ ∧h.res′′ = h.res′

 (46)

Main6(X,X′′)←Main5(X,X′),out′′ = h.res′ ∧

 req′′ = req′ ∧ in′′ = in′

∧ m′′ = m′ ∧h.data′′ = h.data′

∧ h.DiagCode′′ = h.DiagCode′ ∧h.res′′ = h.res′

 (47)

Main7(X,X′′)←Main6(X,X′),m′′ = req′ ∧

 req′′ = req′ ∧ in′′ = in′

∧ h.data′′ = h.data′ ∧h.DiagCode′′ = h.DiagCode′

∧ h.res′′ = h.res′ ∧h.out′′ = h.out′

 (48)

As stated in Section 5.3, the effect of calling a CFA B is captured by the predicate BlB,x , where lB,x is the
exit location of B, similar to the embedding of Main in the PLC cycle in (41). However, since no concrete
implementation of ReqHandler was stated, in the following, we use example locations 0 and 42 as entry and
exit respectively. The instantiation of (30) for the calls (2,ReqHandler(h.data,h.DiagCode,h.res),3) and
(4,ReqHandler(h.data,h.DiagCode,h.res),5) results in:

Main3(X,X′′)←Main2(X,X′),



ReqHandler42(h.data′,h.DiagCode′,h.res′,

h.data′′,h.DiagCode′′,h.res′′)

∧ req′′ = req′ ∧ in′′ = in′ ∧m′′ = m′ ∧out′′ = out′

∧ (h.DiagCode = 0→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0x8000)

∧ (h.DiagCode = 0x8000→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0xC001)

∧ (h.DiagCode = 0xC001→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0xC001)



(49)

Main5(X,X′′)←Main4(X,X′),



ReqHandler42(h.data′,h.DiagCode′,h.res′,

h.data′′,h.DiagCode′′,h.res′′)

∧ req′′ = req′ ∧ in′′ = in′ ∧m′′ = m′ ∧out′′ = out′

∧ (h.DiagCode = 0→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0x8000)

∧ (h.DiagCode = 0x8000→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0xC001)

∧ (h.DiagCode = 0xC001→ h.DiagCode′ = 0

∨ h.DiagCode′ = 0xC001)



(50)

where the grey constraint is the optional information provided by the example mode space (cf. Section 5.3).
Similar to the passing of state to Main in (40), the instantiation of clause (31) for the call edges yields:

ReqHandler0(X
′
h,X

′
h)←Main2(X,X′) (51)

ReqHandler0(X
′
h,X

′
h)←Main4(X,X′) (52)

This achieves the passing of h’s state to the functional characterisation of ReqHandler at both locations 2 and
4, such that the corresponding relations ReqHandler42 in (49) and (50) are guaranteed to not be empty. Just as
Main7(X,X′) transitively depends on Main0(X,X′), the exit location predicate ReqHandler42 will transitively
depend on the entry location predicate ReqHandler0 for any concrete implementation of ReqHandler.
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