
Lehrstuhl für Informatik 2
Software Modeling and Verification

Master Thesis

Accelerating Predicate Abstraction for
Probabilistic Automata

Dimitri Bohlender

September 2, 2014

First Referee:
Prof. Dr. Ir. Joost-Pieter Katoen

Second Referee:
Apl. Prof. Dr. Thomas Noll

Acknowledgements.
First of all, I want to thank Prof. Katoen, Prof. Noll and Prof. Ábrahám for their

inspirational lectures on different approaches to modelling and verification, which got
me interested in formal methods in the first place.

Also, I want to thank Christian Dehnert for his advice and support during the nu-
merous ups and downs of this thesis.

Furthermore, I owe my thanks to my girlfriend Julia for bearing with me during this
busy time of working from dawn till dusk.

Lastly, and most importantly, I want to express my gratitude towards my family for
nurturing my skills and always having faith in me and my decisions.

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, den 2. September 2014

Dimitri Bohlender

i

ii

Zusammenfassung

Probabilistisches Model Checking ist eine Technik, die beweisen oder widerlegen kann,
ob ein probabilistisches System sich konform zu einer Spezifikation verhält. Um Systeme
mit besonders vielen Zuständen analysieren zu können, greift man auf speichereffiziente
symbolische Datenstrukturen, wie etwa binäre Entscheidungsdiagramme (BED) zurück
oder fasst ähnliche Zustände zusammen, um die Spezifikation potentiell bereits auf
einem kleineren, überapproximierenden Zustandsraum verifizieren zu können. Menü-
basierte Abstraktion ist eine solche Überapproximationstechnik, welche einen spieltheo-
retischen Ansatz mit Predicate Abstraction kombiniert. Wir zeigen erstmals ein kom-
plett symbolisches Verfahren zur Bestimmung der Menü-basierten Abstraktion und Ve-
rifikation des Systems. Insbesondere werden Optimierungen vorgestellt, die notwendig
sind, um das Verfahren vergleichbar schnell zur, teils expliziten, Referenzimplementie-
rung Pass zu machen. Diese vergleichen wir mit unserer prototypischen Implementie-
rung und evaluieren die Effektivität verschiedener Optimierungen anhand von Fallstu-
dien. Zudem gehen wir darauf ein, wie das Verfahren auf modulare Systeme erweiterbar
ist.

Abstract

Probabilistic model checking is a technique to verify the compliance of systems which ex-
hibit probabilistic behaviour with respect to a specification. Treatment of systems with a
large state space is enabled through the employment of memory-efficient, symbolic data
structures, such as Binary Decision Diagrams (BDDs), or lumping of similar states to
potentially allow for a verification of the specification on a smaller, over-approximating
state space. Menu-based abstraction is such an over-approximation which combines a
game theoretic approach with predicate abstraction. We firstly present a fully sym-
bolic procedure to both compute the menu-based abstraction and verify the system. In
particular, we present the optimisations necessary to make the procedure comparable
fast to the partially explicit reference implementation Pass. We compare the latter to
our prototypical implementation and evaluate the efficiency of different optimisations
on the basis of case studies. Additionally, we elaborate on how the procedure can be
extended to work with modular systems.

iii

iv

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. State Space Explosion Problem . 2

1.3. Outline . 3

2. Preliminaries 5
2.1. Probabilistic Models . 5

2.1.1. Probability Distribution . 5

2.1.2. Discrete-Time Markov Chain . 6

2.1.3. Probability Measure for DTMCs 8

2.1.4. Reachability Probability . 10

2.1.5. Probabilistic Automata . 13

2.1.6. Minimal and Maximal Reachability Probabilities 15

2.1.7. The Prism Modelling Language 17

2.1.8. Stochastic Games . 23

2.2. Abstraction . 28

2.2.1. Relating Concrete and Abstract Domain 28

2.2.2. Relating Concrete and Abstract Valuation Transformers 30

2.2.3. Game-based Abstraction . 31

2.2.4. Predicate Abstraction . 35

2.3. Multi-Terminal Binary Decision Diagrams 35

2.3.1. Concept . 36

2.3.2. Operations . 37

2.4. Satisfiability Modulo Theories . 38

3. Symbolical Model Checking with Menu-games 39
3.1. Menu-based Abstraction . 39

3.1.1. Concept . 40

3.1.2. Menu-game as Implementation of Menu-based Abstraction . . . 41

3.2. Representing Menu-games via MTBDDs 44

3.3. Construction of Menu-games from Probabilistic Programs 47

3.3.1. Logical Characterisation of Concrete Semantics 47

3.3.2. Logical Characterisation of Abstract Semantics 49

3.3.3. Logical Characterisation of Menu-games 50

3.3.4. Construction Algorithm . 51

3.3.5. Reachable State Space . 54

v

Contents

3.4. Solving Menu-games . 55

3.4.1. Symbolical Value Iteration . 55

3.4.2. Symbolical Valuation Transformer Application 57

3.5. Backward Refinement . 59

3.5.1. Pivot Blocks . 60

3.5.2. Deriving Refinement Predicates 61

3.5.3. Backward Refinement Procedure 61

3.5.4. Deriving Strategies Symbolically 64

3.5.5. Computing Pivot Blocks Symbolically 69

4. Optimisation Opportunities 71
4.1. Optimising Abstraction . 71

4.1.1. Asserting Variable Ranges . 71

4.1.2. Exploiting Incrementality . 72

4.1.3. Relevant Predicates Optimisation 72

4.1.4. Expression Decomposition . 76

4.1.5. Unrelated Commands . 77

4.1.6. Reachable State Space as Constraint 77

4.2. Optimising Value Iteration . 78

4.2.1. Static Pre-computation of Reachability 78

4.2.2. Reusing Previous Reachability Values 83

4.2.3. Pivot-picking Policies . 84

4.2.4. Strategy-reachable Pivot Blocks 84

4.2.5. Removing Goal Successors . 84

5. Symbolical Backward Refinement in Practice 85
5.1. Implementation Details . 85

5.2. Overview of Case Studies . 86

5.3. Evaluation . 87

5.3.1. Abstraction and Construction . 88

5.3.2. Probabilistic Reachability Analysis 94

5.3.3. Symbolic vs. Explicit Memory Usage 98

5.3.4. Pivot-picking Policies . 99

5.3.5. Storm vs. Pass . 100

6. Assume-guarantee Style Extension for Menu-games 103
6.1. Composition of Probabilistic Automata 103

6.2. Composition of Menu-games . 106

6.3. Assume-guarantee Rule . 108

7. Conclusion 111
7.1. Summary & Evaluation . 111

7.2. Future Work . 112

vi

Contents

Appendix 117
A. Assume-guarantee Proof . 117
B. Raw Evaluation Data . 119

B.1. Crowds Protocol . 119
B.2. Randomised Consensus Shared Coin Protocol 120
B.3. Asynchronous Leader Election Protocol 121
B.4. Wireless LAN Protocol . 122
B.5. Memory Usage . 125
B.6. Storm vs. Pass . 126

C. Case Studies and Properties . 126
C.1. Crowds Protocol . 126
C.2. Randomised Consensus Shared Coin Protocol 127
C.3. Asynchronous Leader Election Protocol 129
C.4. Wireless LAN Protocol . 130

Bibliography 135

vii

Contents

viii

List of Figures

1.1. General structure of the model checking approach 2

2.1. Simulating a fair coin by a die . 7
2.2. Example usage of ≤ with respect to valuations 11
2.3. Illustration of greatest lower bound and least upper bound concept . . . 12
2.4. Example of a PA . 14
2.5. Induced DTMC Aσmin . 16
2.6. Semantics JPsimpleK of example probabilistic program Psimple 20
2.7. Example of a SG . 24
2.8. Induced DTMC Gσ1,σ2 . 26
2.9. Example of abstraction and concretisation functions usage 29
2.10. Best transformer f# = α ◦ f ◦ γ . 30
2.11. PA JPsimpleK and its game-based abstraction GJPsimpleK,Q 33
2.12. Two MTBDDs representing the same function 36

3.1. PA JPsimpleK and its menu-based abstraction ĜJPsimpleK,Q 43
3.2. A Menu-game and its MTBDD . 46
3.3. Extending Dsys with trap-successors . 54
3.4. Unlabeling distributions and matrix-vector-multiplication 58
3.5. Both players maximising over their choices 59
3.6. General structure of the backward refinement procedure 62
3.7. Backward refinement of the Menu-game of Psimple 64
3.8. Illustration of MaxAbstractRepresentative 66
3.9. Case to consider when updating strategies 66

4.1. Extending a solution with irrelevant destination predicates 73
4.2. Illustration of a more complex solution 74
4.3. A problematic transition constraint solution 75
4.4. Why predicates related to the assignment variable must be considered . 75
4.5. Deriving the source predicate constraint from Dsrc

c 78
4.6. A Menu-game with the goal set {B5} . 81
4.7. A fragment of a Menu-game prior to refinement 83

5.1. Crowds Protocol – abstraction measurements 89
5.2. Consensus Protocol – abstraction measurements 90
5.3. Leader Election Protocol – abstraction measurements 91
5.4. Wireless LAN Protocol – abstraction measurements 93

ix

List of Figures

5.5. Crowds Protocol – analysis measurements 95
5.6. Consensus Protocol – analysis measurements 95
5.7. Leader Election Protocol – analysis measurements 96
5.8. Wireless LAN Protocol – analysis measurements 97
5.9. Memory consumption of symbolical and explicit approaches 98
5.10. Pivot policies’ impact on number of refinements 99
5.11. Full reachability analysis run times of Storm and Pass 100

6.1. Compositional modelling . 104
6.2. Composition Aerr ‖ Anom . 105
6.3. Menu-games of components . 107
6.4. Composition ĜAerr ,Serr ‖ ĜAnom ,Qnom . 108

x

1. Introduction

This chapter introduces the concept of (probabilistic) model checking as a formal method
to verify a system’s compliance with respect to a specification. We motivate the need for
such a technique, elaborate on the fundamental problem of model checking and sketch
already proposed techniques for its treatment before we end this chapter with an outline
of this thesis.

1.1. Motivation

The steady increase of system design complexity is accompanied by an increasing dif-
ficulty of their analysis and often renders manual analysis even impossible. Yet, these
systems pervade all areas of life and people place reliance on them. Especially network
protocols, like the IEEE 802.11 wireless LAN protocol1, are usually probabilistic in na-
ture due to the use of randomised algorithms and the need of modelling probabilistic
phenomena like message loss. While the repair of previously undetected errors in stan-
dardised network protocols may merely be expensive, the compliance of safety-critical
systems with respect to a safety-specification is of utter importance as errors may cost
lives, e.g. [Lacan et al., 1998]. Clearly, the need for rigorous, automated verification
procedures arises. Testing, however, cannot fill this gap, as it only uncovers bugs, but
does not proof their absence (unless every possible execution is covered).

Model checking, pioneered by [Clarke and Emerson, 1982, Queille and Sifakis, 1982],
was one formal method that emerged from this urge, capable to prove or disprove a
system’s compliance with respect to some specification by an exhaustive examination
of all possible executions of the system and checking whether any of them violate the
specification.

Figure 1.1 [Baier and Katoen, 2008] illustrates the structure of the general model
checking approach. The initial (informal) artefacts are the description of the system
and the specification it is expected to respect. Both must be formalised first to get
precise descriptions of what the system should do, and what it should not do, as well
as how the system behaves. The specification is usually formalised as a set of temporal
logic formulae, e.g. CTL [Clarke et al., 1986], which are suitable to specify qualitative
properties like “eventually a collision free transmission occurs” or “there can never be
more than one process in the critical section”. The system’s formal representation is
usually a digraph structure, e.g. LTS [Baier and Katoen, 2008], where vertices represent
the systems’s states while edges represent the possibilities to transfer the system from
one state to another. Both these formal artefacts act as input to the fully automated

1http://standards.ieee.org/about/get/802/802.11.html

1

http://standards.ieee.org/about/get/802/802.11.html

1. Introduction

model checking tool, the model checker, which analyses whether the properties are
satisfied by the model or there is some violating execution – the counterexample.

model checking

formal
properties

system
model

formalising modelling

specification system

satisfied violated

+ counterex.

Figure 1.1.: General structure of the model checking approach

Whilst qualitative properties are suitable in the non-probabilistic setting, they are
rarely of interest for probabilistic systems. For instance, the wireless LAN protocol
clearly violates the property “no collision will ever occur”. This, however, does not
mean that the protocol is bad. It actually suffices if the protocol is guaranteed to sat-
isfy properties like “the probability for a collision to occur twice in a row is always
below 5%” and rather indicates that, in the probabilistic setting, quantitative measures
like performance and quality-of-service guarantees become vital concerns. Probabilistic
model checking builds upon conventional model checking by extending both the proper-
ties, e.g. PCTL [Hansson and Jonsson, 1994], and the models with quantifiable features
like probabilities, such that properties like the aforementioned one can be verified. In
fact, this technique has been successfully applied to the wireless LAN protocol to reason
about similar properties [Kwiatkowska et al., 2002].

1.2. State Space Explosion Problem

Based on the tempting advantages model checking exhibits, one may wonder why this
technique is rarely used on real-world models but mostly subject to academic usage.
The fundamental problem with this approach is known as the “State Space Explosion

2

1.3. Outline

Problem”, which refers to the number of states in the system model which rapidly
increases with model complexity and does often not fit into memory. Consider, for ex-
ample, a system that is modelled by N variables from a domain of k possible values.
Such a system may have up to kN states. Albeit, not all of them may be reachable,
the growth of the state space is asymptotically exponential in the number of variables.
Using explicit state-space enumeration, state-of-the-art model checkers can handle state
spaces of about 108 to 109 states. One strategy to alleviate this shortcoming is to use
symbolic data structures, as their size decreases the more similarities the data they rep-
resent contains, and practical system models often feature symmetries in their structure.
Another approach is to abstract from the concrete state space by lumping states which
are “similar” with respect to some measure. Of course, such a measure must be defined
in a way so that the property of interest can still be checked, i.e. the abstraction must
preserve it. [Baier and Katoen, 2008]

However, even if a model fits into memory, its analysis may still be too computa-
tionally expensive to be carried out. Many techniques have been proposed to enable
probabilistic model checking of real-world systems by avoiding building the whole state
space. Since properties are typically quite specific, a large portion of the state space
is not relevant to verify them. This motivates the use of iterative abstraction refine-
ment schemes, like [Hermanns et al., 2008], which begin with a very coarse abstraction
lumping many states together, and refine it iteratively if it turns out too coarse to
prove or disprove the satisfiability of the respective property. Other techniques are
the game-based abstraction-refinement [Kattenbelt et al., 2010, Wachter, 2011] which
reinterprets the probabilistic model as a game and the assume-guarantee verification
[Kwiatkowska et al., 2010] which exploits the modular structure of system models. This
thesis develops a fully symbolic version of the menu-based abstraction proposed in
[Wachter, 2011], presents necessary optimisations to make the procedure comparable
fast to the partially explicit reference implementation Pass, and elaborates on how the
procedure can be employed for assume-guarantee style verification.

1.3. Outline

The thesis consists of seven chapters. In chapter 2 we give an introduction into the the-
oretical background, i.e. the models and concepts this thesis deals with. The subsequent
chapter 3 goes into detail about computing and analysing the menu-based abstraction in
a fully symbolical way. Chapter 4 presents several optimisations for both the abstraction
and the analysis procedure. We evaluate the optimisations and compare our prototypi-
cal implementation to Pass in chapter 5. Finally, we elaborate on a compositionality-
exploiting assume-guarantee style extension in chapter 6 and summarise our findings in
chapter 7.

3

1. Introduction

4

2. Preliminaries

This chapter builds the theoretical foundation of this thesis and presents the knowledge
needed to understand subsequent chapters. We start with a gentle introduction of the
probabilistic models, in particular Probabilistic Automata (PA), as these will become
the formal models for our probabilistic systems. It continues with the concept of ab-
straction, with focus on the game-based abstraction as a form of predicate abstraction.
Subsequently, we introduce Multi-Terminal Binary Decision Diagrams (MTBDDs) as
the symbolic data structure that will be used to store our data in a memory-efficient
way. The chapter concludes with a short insight into Smt-solving.

2.1. Probabilistic Models

In a nutshell, Probabilistic Automata [Segala, 1995, Rabin, 1963] have a set of states
and, for every state, may define probability distributions to other states, such that the
transition probability to any other state is determined by the current state and cho-
sen distribution only. Given a strategy to resolve a PA’s non-determinism we obtain a
Discrete-Time Markov Chain (DTMC) for which the unique probability of reaching a
specific set of states can be computed. However, modelling real-world PA by hand is in-
feasible due to their size. Therefore, probabilistic automata are usually specified in terms
of probabilistic programs. A wide-spread modelling formalism for probabilistic programs
is the language of the probabilistic model checker Prism [Kwiatkowska et al., 2011]. Fi-
nally, we define stochastic games, whose relation to PA will become apparent later on.

2.1.1. Probability Distribution

To reason about probabilistic behaviour we, first of all, need the notion of a probability
distribution. Besides conventional probability distributions, we introduce the concept
of labelled probability distributions which extend probability distributions with unique
labels for their branches [Wachter, 2011].

Definition 2.1 (Probability Distribution). A (discrete) probability distribution µ over
a set S is a function µ : S → [0, 1] such that µ(S) :=

∑
s∈S µ(s) = 1.

We denote the the domain of (discrete) probability distributions over a set S by Dist(S).

Definition 2.2 (Labelled Probability Distribution). Let U be a finite set of labels. A
labelled probability distribution µU over a set U × S is a function µU : U × S → [0, 1]
such that µU (S) :=

∑
(u,s)∈U×S µ(u, s) = 1, where µU is right-unique, i.e. for all s, t ∈ S

and u ∈ U , µU (u, s) > 0 and µU (u, t) > 0 implies s = t.

5

2. Preliminaries

We denote the the domain of (discrete) labelled probability distributions over a set
U × S by DistU (S).

Note that a labelled probability distribution µU ∈ DistU (S) induces a (unlabelled)
probability distribution µ̂U ∈ Dist(S):

µ̂U (s) :=
∑
u∈U

µ(u, s).

To simplify the construction of a labelled distribution based on a set of states S =
{s0, . . . , sn}, probabilities p0, . . . , pn ∈ [0, 1] summing up to 1, and pairwise labels U =
{u0, . . . , un}, we employ the auxiliary operator ⊕, where(

n⊕
i=0

pi : (ui, si)

)
(u, s) :=

{
pi if (u, s) = (ui, si) for some i ∈ [0, n]

0 otherwise
.

Example 2.3. Consider modelling a fair die by an uniform labelled distribution over
its numbers S = {1, 2, 3, 4, 5, 6}. Using the auxiliary operator, we can express it as

1

6
: (u0, 1)⊕ 1

6
: (u1, 2)⊕ 1

6
: (u2, 3)⊕ 1

6
: (u3, 4)⊕ 1

6
: (u4, 5)⊕ 1

6
: (u5, 6).

2.1.2. Discrete-Time Markov Chain

A Discrete-Time Markov Chain (DTMC) is a modelling formalism for probabilistic
behaviour. A DTMC is a digraph-like structure to the effect that it consist of states
and transitions, too. However, unlike for conventional graphs, the transitions represent
probability distributions over the set of states and every state is equipped with exactly
one of them. That is, reaching a specific successor of a state is governed by chance.
The fact that the probability distributions are static in the sense that the likelihood of
reaching a specific state from the current one does not depend on the system’s evolution
up to this point, but merely on the current state, is known as the memoryless property
or Markov property [Baier and Katoen, 2008].

Definition 2.4 (Discrete-Time Markov Chain (DTMC)). A Discrete-Time Markov
Chain is a tuple

D = (S,U,P, sinit)

where

• S is a countable, nonempty set of states,

• U is a finite update alphabet,

• P : S → DistU (S) is the transition function that assigns a labelled distribution
P(s) to every state s ∈ S,

6

2.1. Probabilistic Models

• sinit ∈ S is the initial state,

In literature, the notion of DTMCs with an initial distribution ιinit ∈ DistU (S) is com-
mon but does not yield a more expressive formalism than the presented one. Consider
such a DTMC D = (S,U,P, ιinit), then D′ = (S] {sinit}, U,P′, sinit) with

P′(s) :=

{
ιinit if s = sinit

P(s) otherwise

is an equivalent DTMC using the initial state notation.
A path in D is an infinite sequence of states π = s0s1s2 · · · ∈ Sω such that every si

has a transition to si+1, i.e. P̂(si)(si+1) > 0 for all si. Let Paths(D) denote the set of
paths in D, and Pathsfin(D) denote the set of finite path fragments s0s1 . . . sn where

n ≥ 0 and P̂(si)(si+1) > 0 for all 0 ≤ i < n. We employ the notation Paths(s) and
Pathsfin(s) to denote the set of all paths and path fragments that start in state s.

Example 2.5. A DTMC can be used to model the simulation of a fair die by a coin as
proposed by [Knuth and Yao, 1976] and illustrated below.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

s1 s2 s3 s4 s5 s6

0.5, h 0.5, t

0.5, h

0.5, t 0.5, h

0.5, t

0.5, h

0.5, t
0.5, h 0.5, t 0.5, h 0.5, t

0.5, h

0.5, t

1.0, uτ 1.0, uτ 1.0, uτ 1.0, uτ 1.0, uτ 1.0, uτ

Figure 2.1.: Simulating a fair coin by a die

The states {s1, s2, . . . , s6} stand for the possible die outcomes {1, 2, 3, 4, 5, 6}. While
the simulation is in progress the outgoing transitions represent the two possible outcomes

7

2. Preliminaries

of a coin toss – heads and tails. Accordingly, we identify the updates h and t but use up-
date uτ , which models neither heads nor tails, at the end of the coin tossing. If the state
is in the initial state s0 and coin-tossing yields heads the system will transfer into state
s1,2,3 with probability 0.5. At this point it may not be clear why this DTMC properly
models a fair die. This will be established later with an argument on the reachability
probabilities for the states at the bottom of Figure 2.1. [Baier and Katoen, 2008]

2.1.3. Probability Measure for DTMCs

Although DTMCs yield a rather intuitive probabilistic model, it still remains to estab-
lish a concept of associating probabilities with sets of paths to enable reasoning about
probabilistic properties. To this end, we need the notion of both σ-algebra and proba-
bility measure. This section follows the characterisation of [Baier and Katoen, 2008].

Definition 2.6 (σ-algebra). A σ-algebra is a pair (Outc,E), where Outc is a nonempty
set of possible outcomes and E ⊆ 2Outc a set of subsets of Outc that contains the empty
set and is closed under complementation and countable unions. We refer to the elements
of E as events.

Definition 2.7 (Probability Measure). A probability measure on a σ-algebra is a func-
tion Pr : E→ [0, 1] such that

Pr(Outc) = 1

and if (En)n≥1 is a family of pairwise disjoint events En ∈ E, then

Pr

⋃
n≥1

En

 =
∑
n≥1

Pr(En).

For countable Outc, a probability measure can trivially be obtained by fixing a dis-
tribution µ ∈ Dist(Outc). Any such distribution µ induces a probability measure on
(Outc,E) in the following way

Pr(Event) =
∑

outc∈Event

µ(outc),

where Event ∈ E.

Example 2.8. In the context of a fair die an adequate σ-algebra would be (Outc,E),
where

Outc = {1, 2, 3, 4, 5, 6}

and

E = {{1, 3, 5}}
∪ {∅}
∪ {{2, 4, 6},Outc} ,

8

2.1. Probabilistic Models

assuming that the event of interest is the die-cast resulting in an odd number. Note
that although we are only interested in the event {1, 3, 5} the empty set and both com-
plements and unions of all events must be added to meet requirements of the definition.

The definition of a fair die requires all outcomes to be uniformly distributed, i.e.
µ(outc) = 1

6 for each outc ∈ Outc. As a result, the probability for a die-cast to result
in an odd outcome is given by

Pr({1, 3, 5}) =
∑

outc∈{1,3,5}

µ(outc) =
1

6
+

1

6
+

1

6
=

1

2

Definition 2.9 (Cylinder Set). The cylinder set of a finite path π̂ = s0 . . . sn ∈
Pathsfin(D) is the set of all infinite paths starting with π̂ and is defined as

Cyl(π̂) = {π ∈ Paths(D) | π̂ is prefix of π} .

In order to enable associating probabilities to events in DTMCs, it remains to con-
struct a respective σ-algebra and probability measure. Let D = (S,P, sinit ,AP , L) be a
DTMC. It has been proven [Baier and Katoen, 2008] that there exists a unique proba-
bility measure PrD on the σ-algebra ED where Outc := Paths(D) and the probabilities
for the cylinder sets are given by

PrD(Cyl(s0 . . . sn)) = P(s0 . . . sn)

where
P(s0 . . . sn) :=

∏
0≤i<n

P̂(si)(si+1).

Intuitively speaking, infinite paths take the place of the possible outcomes while certain
subsets of Paths(D) act as events. This allows for assignment of probabilities to finite
paths via the cylinder set construction.

Example 2.10. Consider the DTMC for simulation of a fair die with a coin from Figure
2.1. Let π̂ = s0 s1,2,3 s1,2,3 s2,3 ∈ Pathsfin(sinit) be a finite path. The probability of its
cylinder set is given by

PrD(Cyl(π̂)) = P̂(s0)(s1,2,3) · ̂P(s1,2,3)(s2,3) = 0.52 =
1

4
,

where

Cyl(π̂) = {s0 s1,2,3 s2,3 sω2 }
∪ {s0 s1,2,3 s2,3 sω3 } .

9

2. Preliminaries

2.1.4. Reachability Probability

Specifications for probabilistic systems usually demand the probability for something
“bad” happening to stay below a certain value, and dually, the probability for something
“good” happening to be above a certain value. Checking of both reachability properties
boils down to computing the probability of reaching a set of designated goal states.

Let D = (S,U,P, sinit) be a DTMC and G ⊆ S the set of goal states. To determine
the probability of reaching the goal states, we need to characterise the respective event,
denoted by ♦G, as a measurable set of paths. Basically, we are interested in the set of all
paths eventually reaching a state from G. However, due to the fact that the probability
measure is based on cylinder sets, we will equivalently use

♦G :=
⋃

π̂ = s0 . . . sn ∈ Pathsfin(sinit),
s0, . . . , sn−1 6∈ G but sn ∈ G

Cyl(s0 . . . sn),

which intuitively is the union of cylinder sets of initial finite path fragments which end
in goal states [Baier and Katoen, 2008]. Taking account of Definition 2.7, the actual
reachability probability is given by

PrD(♦G) = Pr

 ⋃
π̂=s0...sn∈Pathsfin (sinit)

Cyl(s0 . . . sn)

=

∑
π̂=s0...sn∈Pathsfin (sinit)

Pr(Cyl(s0 . . . sn))

=
∑

π̂=s0...sn∈Pathsfin (sinit)

P(s0 . . . sn)

where
s0, . . . , sn−1 6∈ G but sn ∈ G.

We employ the notation PrD,s(♦G) to denote the reachability probability of G from
state s instead of sinit , which is technically obtained by declaring s as the initial state.

Example 2.11. Let us now reconsider the simulation of a fair die by a coin, see Figure
2.1, and verify that it indeed is a proper simulation of a fair die, i.e. PrD(♦{si}) = 1

6
for i ∈ {1, 2, 3, 4, 5, 6}. The initial finite paths leading to G = {s1} are of the form

π̂n = s0 s1,2,3 s
′
1,2,3 (s1,2,3 s

′
1,2,3)

n s1

where n ∈ N. Computing the associated probability as follows

PrD(♦{s1}) =
∞∑
n=0

(
1

2

)3

·

((
1

2

)2
)n

=
1

8
·
∞∑
n=0

(
1

4

)n
=

1

8
· 1

1− 1
4

=
1

6

proves that the simulation of casting the die by a coin toss is adequate. Bear in mind
that we omitted the proof of PrD(♦{si}) = 1

6 , for i ∈ {2, 3, 4, 5, 6}, as it is analogous.

10

2.1. Probabilistic Models

Value Iteration

Now, we have a formalisation of probabilistic reachability. However, as illustrated in Ex-
ample 2.11, calculating the reachability probability by means of infinite sums is rather
cumbersome – especially for large systems. This section presents an alternative ap-
proach, called value iteration, using a fixed point characterisation of probabilistic reach-
ability such that the reachability probability, with respect to a set of goal states, can
be computed in an iterative way.

Domain of Computation Since, we aim for a fixed point characterisation we have to
reconsider the domain of computation such that both the states are associated with
reachability probabilities and several variants, think of iterations, of state spaces asso-
ciated with reachability probabilities can be compared and combined. To this end we
need the notion of lattice and valuation.

Definition 2.12 (Lattice). A (complete) lattice is a partial order (L,vL), where all
subsets of L have both least upper bound and greatest lower bound in L.

We employ the operators
d

: 2L → L and
⊔

: 2L → L, induced by vL, to denote the
greatest lower bound and least upper bound of a subset of L.

Definition 2.13 (Valuations). Let S be a set of of states. A valuation over S is a
function w : S → [0, 1] that maps states to probabilities [0, 1] ⊆ R.

We denote the set of valuations over a state S by

[0, 1]S = {w | w : S → [0, 1]} .

Combining both formalisms yields the desired domain of computation. The pair
([0, 1]S ,≤) is a lattice [Wachter, 2011], where valuations are ordered according to ≤:

∀w,w′∈[0,1]S w ≤ w′ ⇐⇒ ∀s∈S w(s) ≤ w′(s).

Example 2.14. For a lattice ([0, 1]S ,≤) over a set S of four states, consider the val-
uations w0, w1 and w2 from the Figure below, where labelling indicates the associated
probability. Clearly, w1 ≤ w2, since w2 maps all states to values greater or equal to
those of w1. Bear in mind though, that ≤ may not be total, as illustrated by the
valuation-pair w0 and w1.

0.1 0.3

0.0 0.9

w1

0.3 0.2

0.0 1.0

w0

0.4 0.3

0.0 1.0

w2

�

�
≤

Figure 2.2.: Example usage of ≤ with respect to valuations

11

2. Preliminaries

While Figure 2.2 illustrates the usage of the ≤-relation with respect to valuations, Figure
2.3 tries to convey the intuition behind the operators

⊔
and

d
, which correspond to

min and max for ≤.

0.1 0.2

0.0 0.9

d
{w0, w1}

0.3 0.3

0.0 1.0⊔
{w0, w1}

Figure 2.3.: Illustration of greatest lower bound and least upper bound concept

Fixed Point Characterisation Intuitively, the reachability probability of a state is
the weighted sum of the reachability probabilities of its successors. As a result, the
reachability probability can be formulated by a recursive system of equations.

Example 2.15. For example, in the DTMC from Figure 2.1, the probability of reaching
G = {s1} is the smallest solution of the following equations:

PrD,s(♦G) :=

0.5 · PrD,s1,2,3(♦G) + 0.5 · PrD,s4,5,6(♦G) if s = s0

0.5 · PrD,ss′1,2,3
(♦G) + 0.5 · PrD,s2,3(♦G) if s = s1,2,3

0.5 · PrD,ss1,2,3 (♦G) + 0.5 · PrD,s1(♦G) if s = s′1,2,3

1 if s = s1

0 if s ∈ S \
{
s0, s1, s1,2,3, s

′
1,2,3

}
where states which cannot reach the goal, are assigned the probability 0, while s1, being
part of the goal set, by definition has the reachability probability 1.

The recursive equation system which defines the reachability probabilities can be
viewed as a monotone function over [0, 1]S – a valuation transformer [Wachter, 2011].

Definition 2.16 (Monotone Function). Let (L,⊆L) and (M,⊆M) be two lattices. A
function f : L→M is monotone if for all l, l′ ∈ L, l vL l′ implies f(l) vM f(l′).

Definition 2.17 (Valuation Transformer). A monotone function f : [0, 1]S → [0, 1]S is
a valuation transformer.

For a DTMC D = (S,U,P, sinit) and goal set G ⊆ S, the valuation transformer
preG : [0, 1]S → [0, 1]S for probabilistic reachability is given by

preG(w)(s) :=

1 if s ∈ G
0 if s ∈ G0∑
u∈U,s′∈S

P(s)(u, s′) · w(s′) otherwise
,

12

2.1. Probabilistic Models

where G0 ⊆ S denotes the set of states, for which there exists no path to any of the
states from G. Note that this is the very scheme that was applied in Example 2.15.
Now, it only remains to assure ourselves of the existence of a fixed point of preG. This
assurance is provided by the famous Fixed Point Theorem of Tarski.

Theorem 2.18 (Fixed Point Theorem [Tarski, 1955]). Let f : L → L be a monotone
function over a lattice (L,vL). Then the set of fixed points Fix (f) = {x ∈ L | f (x) = x}
is a lattice with respect to vL, too.

Accordingly, the least and greatest fixed points of such an f , lfpvL and gfpvL , can
be characterised as greatest lower bound of pre-fixed points and least upper bound of
post-fixed points of f :

lfpvL(f) =
l

Fix (f) =
l
{x ∈ L | f(x) vL x}

gfpvL(f) =
⊔

Fix (f) =
⊔
{x ∈ L | f(x) wL x} .

In our case, the valuation transformer preG is a monotone function over the lat-
tice ([0, 1]S ,≤), such that the existence of a fixed point lfp≤ (preG) is guaranteed
[Wachter, 2011]. As a result, the reachability probability of a state s with respect
to the goal set G is given by the least fixed point

PrD,s(♦G) = (lfp≤ (preG))(s).

2.1.5. Probabilistic Automata

Probabilistic Automata (PA) extend the DMTC formalism with non-determinism by
allowing choosing from several labelled distributions in a state. This extension does no
harm to the Markov property of the formalism, though. Groups of distributions can
also be distinguished by the actions they can be reached with. It is important to realise
that the randomness, which comes along with using probability distributions, is not a
form of non-determinism, since in contrast to likelihood information, non-determinism
models the absence of any information with respect to the outcomes of a choice.

Definition 2.19 (Probabilistic Automaton (PA)). A Probabilistic Automaton is a tuple

A = (S,Act , U,P, sinit)

where

• S, U and sinit are the same as for DTMCs,

• Act is a finite set of actions, and

• P : S → 2Act×DistU (S) is the transition function that assigns non-empty set of
action-distribution pairs P(s) to a state s ∈ S.

13

2. Preliminaries

For convenience, we denote the set of distributions enabled at a state s by

Pµ(s) := {µ ∈ DistU (S) | (a, µ) ∈ P(s)} .

A path in A is an infinite, alternating sequence of states and action-distribution pairs
π = s0 (a0, µ0) s1 (a1, µ1) s2 · · · ∈ (S × Act × DistU (S))ω such that every si has a
transition to si+1, i.e. (ai, µi) ∈ P(si) and µ̂i(si+1) > 0. As for DTMCs, we employ
Paths(A) to denote the set of paths in A, and respectively, Pathsfin(A) for finite path
fragments. In the sequel, let En(s) := {a ∈ Act | ∃(a, µ) ∈ P(s)} for a s ∈ S, be the set
of enabled actions in a state s.

Similar as with DTMCs, a PA A = (S,Act, U,P, I) with a set of initial states I =
{init1, . . . , initn} can be transformed to a semantically equivalent PA

A′ = (S] {sinit} ,Act]Actchoice , U ∪ {uτ} ,P′, sinit),

with a single initial state and an initial non-deterministic choice over the states from I,
where Actchoice := {choosei | init i ∈ I}, and

P′(s) :=

{
{(choosei, 1.0 : (uτ , init i)) | init i ∈ I} if s = sinit

P(s) otherwise
.

Example 2.20. Figure 2.4 shows a PA with the set of actions {a, b} and four states
s0, s1, s2 and s3. Only the states s0 and s3 feature non-determinism as none of the
others have several distributions, illustrated by the black nodes, to choose from. Thus,
if the system is in the initial state s0, choosing the distribution reachable by action a,
will transfer it into state s1 (or s2) with the respective probability 0.3 (or 0.7), while
choosing the distribution associated with action b, will allow it to reach either s0, s2 or
s3. Note that, according to the definition of PA, it is perfectly fine for states, like s3,
to have several outgoing transitions labeled with the same action.

s0

s2 s3s1

a

0.3, u0 0.7, u1

b

0.5, u0

0.25, u1 0.25, u2

b

1.0, uτ

b a

0.8, u0
0.2, u1

a

1.0, uτ

Figure 2.4.: Example of a PA

14

2.1. Probabilistic Models

2.1.6. Minimal and Maximal Reachability Probabilities

Let A = (S,Act, U,P, sinit) be a PA and G ⊆ S a set of goal states. If for all states
of A there is exactly one distribution to choose from, i.e. ∀s∈S |P(s)| = 1, the PA
doesn’t feature non-determinism and can, ignoring the actions, as well be interpreted
as a DTMC. Otherwise, the reachability probability is undefined as it may depend on
the way non-determinism is resolved, e.g. a state might have a choice between either
reaching itself or a goal state with probability 1. Hence, we generally don’t have a unique
reachability probability but rather a range of reachability probabilities, the most relevant
ones being the minimal and maximal probabilities, respectively denoted by Prmin(♦G)
and Prmax (♦G). These probabilities guarantee that no matter how the non-determinism
is resolved, the probability of reaching G is bounded by them. To formalise how non-
determinism is resolved we introduce the notion of strategy.

Definition 2.21 (Strategy for a PA). Let A = (S,Act, U,P, sinit) be a PA. A (mem-
oryless, deterministic) strategy, in literature also referred to as scheduler or policy,
σ : S → Act × DistU (S), s 7→ c ∈ P(s) for A is a function which resolves the non-
determinism in a state s by choosing a unique element from P(s).

There exist more general definitions for strategies but it has been shown that, due to
PA having the Markov property, memoryless, deterministic strategies suffice when rea-
soning about minimal and maximal reachability probabilities [Baier and Katoen, 2008].
We denote the strategies minimising and maximising the reachability probability by
σmin and σmax . The actual computation of both σmin and σmax is a bit more involved
and deferred until chapter 3, where we derive strategies for even more general systems.

Since a strategy resolves all non-deterministic choices of a PA A, the application of a
strategy σ for A induces the DTMC Aσ.

Definition 2.22 (Induced DTMC for PA). Let A = (S,Act, U,P, sinit) be a PA and σ
a strategy for A. Then, the combination of both σ and A induces the DTMC

Aσ = (S,U,Pσ, sinit),

where Pσ(s) := µs with σ(s) = (a, µs) for all s ∈ S.

Note that Aσ in turn induces the probability measure PrAσ on Paths(Aσ) which we
conveniently denote by PrσA. Using this notation we can formalise the minimal and
maximal reachability probability as

Prmax (♦G) := max
σ

Prσ(♦G)

Prmin(♦G) := min
σ

Prσ(♦G),

such that the inequality Prmin (♦G) ≤ PrσA (♦G) ≤ Prmax (♦G) (♦G) holds for all σ by
definition. As for DTMCs we employ the subscript notation PrσA,s when considering
the reachability from any other state s than sinit .

15

2. Preliminaries

Example 2.23. Reconsider the PA A = (S,Act, U,P, sinit) from Figure 2.4 and let
G = {s2}. Due to the fact that there exist only four different strategies for A, it is easy
to realise that the minimising strategy with respect to G is given by:

σmin(s) :=

(b, 0.5 : (u0, s0)⊕ 0.25 : (u1, s2)⊕ 0.25 : (u2, s3)) if s = s0

(b, 1.0 : (uτ , s1)) if s = s1

(b, 1.0 : (uτ , s1)) if s = s2

(a, 1.0 : (uτ , s3)) if s = s3

.

Employing this strategy induces the DTMC Aσmin illustrated below.

s0

s2s1 s3

0.5, u0

0.25, u1
0.25, u2

1.0, uτ
1.0, uτ

1.0, uτ

Figure 2.5.: Induced DTMC Aσmin

Referring to the induced DTMC, we can now conclude

Prmin(♦G) = Prσmin
A (♦G) = PrAσmin (♦G) =

1

4
·
∞∑
i=0

(
1

2

)n
=

1

2

Fixed Point Characterisation

As for DTMCs, probabilistic reachability for PA is expressible as a recursive system of
equations [Baier and Katoen, 2008]. However, in contrast to the valuation transformer
for DTMCs, the minimal reachability probability of a state is not simply a weighted
sum of the reachability probabilities of the successors but the smallest weighted sum,
respectively the biggest weighted sum for maximal reachability probability. Accordingly,
for minimal probabilistic reachability the valuation transformer pre−G : [0, 1]S → [0, 1]S

is given by

pre−G(w)(s) :=

1 if s ∈ G
0 if s ∈ G0

min
(a,µ)∈P(s)

∑
s′∈S

µ̂(s′) · w(s′) otherwise
,

16

2.1. Probabilistic Models

where G0 ⊆ S denotes the set of states, for which there exists no path to any of the
states from G. The minimal reachability probability for a state s is respectively given
by the least fixed point

Prmin
s (♦G) =

(
lfp≤pre−G

)
(s),

see [Baier and Katoen, 2008]. Analogously, for the maximal probabilistic reachability
the valuation transformer pre+

G : [0, 1]S → [0, 1]S is given by

pre+
G(w)(s) :=

1 if s ∈ G
0 if s ∈ G0

max
(a,µ)∈P(s)

∑
s′∈S

µ̂(s′) · w(s′) otherwise
,

and the maximal reachability probability for a state s is given by the least fixed point

Prmax
s (♦G) =

(
lfp≤pre−G

)
(s).

2.1.7. The Prism Modelling Language

The Prism model checker [Kwiatkowska et al., 2011] is the most popular modelling and
verification environment for finite probabilistic systems. Most importantly it features
a widely spread modelling language, based on [Alur and Henzinger, 1999], suitable to
describe probabilistic systems in terms of probabilistic programs. This allows formalising
real-world systems in a more concise, structured and modular manner, in contrast to
large and confusing PA.

Probabilistic programs consist of modules which in turn consist of variables and
guarded commands over these variables. To facilitate modular modelling, the Prism lan-
guage defines CSP-style composition operators [Hoare, 1985, Roscoe et al., 1997], which
synchronise equally labeled commands of different modules. However, for the sake of
convenience we only consider single-module programs. This does not restrict the set of
supported programs though since systems modelled by several modules can be flattened
to single-module programs using the transformations presented in [Katoen et al., 2010].
In the following, we present a simplified version of the Prism modelling language and
define the corresponding semantics in terms of PA, complying with the description of
[Wachter, 2011] and repeatedly referring to the simple probabilistic program from List-
ing 2.1 for better grasp of the matter.

The example program Psimple models a system which has four phases and needs to
perform two runs when it is in its running phase. The different phases are modelled
by a bounded integer variable phase which can take on four different values, while the
number of remaining runs is modelled by an unbounded integer variable run. After the
initialisation the system is put into the running phase, i.e. phase is set to one, and the
number of remaining runs to perform is set to two. During a run there is a 3% chance
of the system breaking, i.e. ending up in phase three. If the system does not break, the
number of remaining runs will be decremented by one. This continues until no runs
remain, i.e. run ≤ 0.

17

2. Preliminaries

1 mdp

2
3 module simple

4 phase : [0 ..3]; // 0=init , 1=running , 2=finished , 3= broken

5 run : int; // -1 -> 2 -> 1 -> 0

6 [a] phase=0 -> 1.0 :(run ’=2) & (phase ’=1);

7 [b] phase=1 & run>0 -> 0.9 7:(run ’=run-1) + 0.0 3:(phase ’=3);

8 [c] phase=1 & run<=0 -> 1.0 :(phase ’=2);

9 endmodule

10
11 init

12 phase=0 & run=-1;

13 endinit

Listing 2.1: Simple probabilistic program Psimple

Syntax

A single-module probabilistic program P consists of a set of typed variables Var , com-
mands Cmd and a Boolean expression init which characterises the initial state.

Variables can only be of Boolean or integer type. Our example program does not
make use of Boolean variables but employs both bounded and unbounded integers, see
phase and run variables in lines 4 and 5. The set of variables is accordingly given by
Var = {phase, run}. We require expressions over Var to be part of some quantifier-free
fragment of first-order logic which comprises Boolean combinations of arithmetic expres-
sions, and use ExprVar and BExprVar ⊆ ExprVar to denote expressions and Boolean
expressions over Var . The initial state expression, refer to line 12, is such a Boolean
expression.

State transitions are realised via the concept of commands. A command has a unique
label called action, a guard from BExprVar and several probabilistic alternatives sepa-
rated by a plus sign. The latter consist of assignments Var → ExprVar , where variables
which are not mentioned explicitly keep their values tacitly, and a probability, such
that the probability weights of all alternatives sum up to one. Note that we can safely
assume actions to be unique because we only consider flattened programs, where actions
are not needed for synchronisation and can be renamed arbitrarily. We formalise the
syntax of commands as follows.

Definition 2.24 (Command). A command is a tuple c = (a, g, ((p1, E1), . . . , ((pk, Ek))),
denoted by

[a] g → p1 : Var ′ = E1 + · · ·+ pk : Var ′ = Ek,

with

• a unique label a called action,

• a guard g ∈ BExprVar , and

18

2.1. Probabilistic Models

• assignments E1, . . . , Ek in linear arithmetic, where Var ′ = E denotes the si-
multaneous update of variables Var according to E, weighted with probabilities
p1, . . . , pk which sum up to one, i.e.

∑
i pi = 1.

We utilise ac and gc to denote the action and guard of a command c. Also, let deg(c)
denote the number of assignments k.

Definition 2.25 (Probabilistic Program). A probabilistic program

P = (Var ,VarType,Act ,Cmd , init)

consists of

• a finite set of variables Var ,

• a mapping VarType : Var → {int [a, b] | a, b ∈ N ∪ {−∞,∞}, a < b} ∪ {bool} of
variables to types,

• a finite set of actions Act :=
⋃
c∈Cmd ac, where

• Cmd is a finite set of commands over Var , and

• the initial state expression init ∈ BExprVar .

Example 2.26. The probabilistic program Psimple from Listing 2.1 is formalised as
follows.

Psimple = (Var ,VarType,Act ,Cmd , init)

where

• Var := {phase, run} and

• V arType : phase 7→ int [0, 3], run 7→ int [−∞,∞] (lines 4-5),

• Act := {a, b, c}

• Cmd := {ca, cb, cc} (lines 6-8), where

ca := (a, phase = 0 , (1.0, {phase 7→ 1, run 7→ 2}))
cb := (b, phase = 1 ∧ run > 0, (0.97, E1), (0.03, E2))

E1 : phase 7→ phase, run 7→ run − 1

E2 : phase 7→ 3, run 7→ run

cc := (c, phase = 1 ∧ run ≤ 0, (1.0, {phase 7→ 2, run 7→ run}))

• init := phase = 0 ∧ run = −1 (line 12).

19

2. Preliminaries

Semantics

Let P = (Var ,VarType,Act ,Cmd , init) be a probabilistic program, then its semantics
is a PA JP K. For illustration, Figure 2.6 shows the (reachable part of the) semantics of
the example program from Figure 2.1.

(0,−1) (1, 2) (3, 2)

(1, 1)

(3, 1)(1, 0)(2, 0)

a 1.0, ua,1 b 0.03, ub,2

0.97, ub,1
aτ 1.0, uτ

b

0.03, ub,20.97, ub,1

aτ 1.0, uτ

c1.0, uc,1

aτ 1.0, uτ

Figure 2.6.: Semantics JPsimpleK of example probabilistic program Psimple

Let dom : Var → 2N∪{−∞,∞} be the function mapping each variable to its domain,
i.e.

dom(var) :=

{
{0, 1} if VarType(var) = bool

[a, b] ∩ N if VarType(var) = int [a, b]
.

Notice, that we treat the Boolean values {false, true} as {0, 1} with 1 being true,
and that |dom(var)| may be infinite, since we allow for integers to be unbounded.
A state of P is a valuation function ν : Var → N assigning a variable var ∈ Var
an element from its semantic domain, i.e. ν(var) ∈ dom(var). For example, a tuple
(p, r) in Figure 2.6 indicates the valuation {phase 7→ p, run 7→ r}, i.e. the initial state
is sinit = {phase 7→ 0, run 7→ −1}. The state space is accordingly given as the set of all
states

S(P) := {ν | ν is a state of P} .

Semantics of Expressions We denote the evaluation of an expression e ∈ ExprVar in
a given state s ∈ S(P) by JeKs. In particular, we say that a state s satisfies a Boolean
expression e ∈ BExprVar , denoted by s |= e, if JeKs = 1, i.e. {phase 7→ 1, run 7→ 2} |=
phase > 0 ∧ run > 0. Conversely, we denote the set of states which satisfy e by
JeK := {s ∈ S(P) | s |= e}, i.e. the set of initial states is given by JinitK.

Semantics of Commands The semantics of a command c is a set of action-distribution
pairs viable in a state, i.e. JcK ⊆ S(P) × Act × DistU (S(P)). A pair (ac, µ) is viable
in a state s, if s satisfies the guard of the command labelled with ac, i.e. s |= gc, with

µ :=
⊕deg(c)

i=1 pi : (ui, si) being derived from the command’s assignments. The successor
state si is determined by updating the state variables according to assignment Ei, i.e.

20

2.1. Probabilistic Models

si = λvar∈Var JEi(var)Ks, with lambda indicating that si is again a mapping to semantic
values. Formally, the semantics are defined as follows [Wachter, 2011]:

Definition 2.27 (Command Semantics). Let

c = (a, g, ((p1, E1), . . . , ((pk, Ek)))

be a command of program P . Its semantics JcK is given by:
(
s0, a,

k⊕
i=1

pi : (ua,i, si)

)∣∣∣∣∣∣
s0, . . . , sk ∈ S(P)
s0 |= g “guard”
∀i∈{1,...,k} si = λvar∈Var JEi(var)Ks0 “updates”

 .

As a result, a tuple (s, ac, µ) ∈ JcK induces a transition from the state s to a distribu-
tion µ, which is reachable by an action ac.

Example 2.28. Let Psimple be the program which we defined in example 2.26 and
whose semantics we illustrated in Figure 2.6. Consider its command

cb := (b, phase = 1 ∧ run > 0, (0.97, E1), (0.03, E2))

E1 : phase 7→ phase, run 7→ run − 1

E2 : phase 7→ 3, run 7→ run

Its semantics JcbK is
(
s0, b,

k⊕
i=1

pi : (ub,i, si)

)∣∣∣∣∣∣∣
s0, . . . , s2 ∈ S(P)
s0 |= phase = 1 ∧ run > 0 “guard”
s1(phase) = s0(phase), s1(run) = s0(run)− 1 “update 1”
s2(phase) = 3, s2(run) = s0(run) “update 2”

 ,

with p1 = 0.97 and p2 = 0.03.

Consider s = {phase 7→ 1, run 7→ 2}. Since s clearly satisfies the guard phase = 1 ∧
run > 0, there is a (s, b, µ) ∈ JcbK with µ : 0.97 : (ub,1, s1)⊕ 0.03 : (ub,2, s2), where

s1 =

{
phase 7→ s(phase) = 1

run 7→ s(run)− 1 = 1

and

s2 =

{
phase 7→ 3

run 7→ s(run) = 2
.

The illustration of the action-distribution pairs of state s is part of Figure 2.6. From
the figure it is easy to see that there exists a tuple (s′, b, µ′) ∈ JcbK for the state s′ =
{phase 7→ 1, run 7→ 1}, too.

21

2. Preliminaries

Semantics of Programs The semantics of a program is a PA whose states are the
derived from the program variables’ domains. The subset of states which satisfies the
initial state expression becomes the set of initial states. Remember that we can trans-
form the PA to have only one initial state, though. Both actions and updates can be
derived from the commands, with the actions being the union of the commands’ labels
and the set of updates being determined by every command’s number of assignments.
Note that there might be states which don’t have any action enabled, i.e. do not satisfy
any command’s guard. We have to introduce an auxiliary action aτ , unrelated to any
command, to add self-loops to such deadlocks since the transition function must be
defined for all states. Overall, this yields the following semantics:

Definition 2.29 (Program Semantics). The semantics of a program

P = (Var ,VarType,ActP ,Cmd , init)

is a PA

JP K = (S,Act , U,P, I),

with

• the set of states S := S(P),

• the set of actions Act := ActP] {aτ},

• the set of updates U := {uac,i | c ∈ Cmd , i ∈ {1, 2, . . . , deg(c)}} ∪ {uτ}, where the
indices indicate from which command and assignment they originate,

• the transition function

P(s) :=

{
{(ac, µ)} if (s, ac, µ) ∈ JcK
{(aτ , 1.0 : (uτ , s))} if s 6|= gCmd

,

where gCmd :=
∨
c∈Cmd gc, and

• the set of initial states I := JinitK.

From this definition it is easy to see that, for any state s, there are no two action-
distribution pairs in P(s) with the same action, i.e. an action uniquely specifies a distri-
bution. Thus for a program P and the respective PA JP K = (S,Act , U,P, I) we employ
the more convenient notation

P(s, a) = µ,

where (a, µ) ∈ P(s).

22

2.1. Probabilistic Models

2.1.8. Stochastic Games

Now that we have formalised PA and have a suitable modelling language to express
complex PA, what do we need another formalism for? In fact, we will not use Stochas-
tic Games for modelling purposes, instead they will become the abstract domain of
computation, as we will see in section 2.2.

Similar as PA extend DTMCs with a level of non-determinism, Stochastic Games
[Condon, 1992] extend PA with another level of non-determinism. Accordingly, be-
sides stochastic choice, they feature two players, each of which resolves a level of non-
determinism. Such games are therefore often referred to as 21

2 -player games. Most
importantly, the players may act adversarial to the effect that, if one player tries to
maximise (or minimise) the probability of reaching a certain vertex, the other player
seeks to minimise (or maximise) this probability.

Stochastic Games are digraph-like structures, where the vertices are partitioned into
three sets – the player 1-, player 2- and stochastic choice-vertices. Stochastic choice
vertices, like states of DTMCs, are distributions over the set of player 1 vertices. Their
predecessors are player 2 vertices which, like states of PA, resolve non-determinism by
choosing a successor, in our case a distributions over player 1 vertices. Player 1 vertices,
in turn, are predecessors of player 2 vertices, and choose from their successors. Keep
in mind that this formalism, too, has the Markov property as both the choices and the
probability distributions are independent of the system’s execution history.

Definition 2.30 (Stochastic Game (SG)). A Stochastic Game is a tuple

G = ((V,E), (V1, V2, Vp), U, vinit) ,

where

• (V,E) is a digraph with edges E ⊆ (V1 × V2) ∪ (V2 × Vp) ∪ (Vp × V1),

• (V1, V2, Vp) is a partition of V , i.e. V1] V2] Vp = V , where

– V1 is the set of player 1 vertices,

– V2 is the set of player 2 vertices,

– Vp ⊆ DistU (V1) is the set of probabilistic vertices, where for all µ ∈ Vp
µ(u, v′) > 0 implies (µ, v′) ∈ E,

• U is, as for PA, the set of updates,

• and the initial vertex vinit .

For convenience, we denote the successors of a vertex by E(v) := {v′ ∈ V | (v, v′) ∈ E}.
A path π in a SG G is an infinite sequence of tuples of vertices

π = (v0,1 v0,2 v0,p) (v1,1 v1,2 v1,p) · · · ∈ (V1 × V2 × Vp)ω ,

23

2. Preliminaries

such that (vi,1, vi,2), (vi,2, vi,p) ∈ E and v̂i,p(vi+1,1) > 0. As for PA, we employ Paths(G)
to denote the set of paths in G.

Similar as with PA, a SG G = ((V,E), (V1, V2, Vp), U, I) with a set of initial vertices
I = {init1, . . . , initn} can be transformed to a semantically equivalent SG

G′ =
(
(V ′, E′), (V ′1 , V

′
2 , V

′
p), U ∪ {uτ} , vinit

)
,

where

• V ′1 := V1] {vinit},

• V ′2 := V2] {choosei ,2 | initi ∈ I},

• V ′p := Vp] {choosei ,p | initi ∈ I}, with choosei ,p := 1.0 : (uτ , init i)

• E′ := E] {(vinit , choosei ,2) | initi ∈ I}
] {(choosei ,2 , choosei ,p) | initi ∈ I}
] {(choosei ,p , initi) | initi ∈ I}

with a single initial vertex and an initial non-deterministic choice over vertices from I.

Example 2.31. Figure 2.7 shows a SG with 16 vertices, where the black circles represent
probabilistic vertices, the grey squares are player 2 vertices, and the remaining ones
belong to player 1. Intuitively, the semantics of the visualisation hardly differ from the
semantics of PA.

v0

v2,1

vp,1 vp,2

v2,2

vp,3 vp,4

v1

v2,3 vp,5
v2

v2,4 vp,6

v3

v2,5 vp,7

0.8, u1

0.2, u2
0.7, u1

0.3, u2

0.5, u1

0.5, u2 1.0, u1

0.4, u1

0.6, u2
1.0, uτ 1.0, uτ

Figure 2.7.: Example of a SG

For example, in the initial vertex v0, player 1 may choose between its successors v2,1
and v2,2. Choosing v2,1 will transfer the system into a player 2 vertex, where player 2

24

2.1. Probabilistic Models

may choose from its probabilistic successor vertices E(v2,1) = {vp,1, vp,2}. If player 2
chooses vp,2 the system will either return to vertex v0 with probability 0.3 or transfer
into v2 with probability 0.7, according to the distribution vp,2.

Reachability Probability for Stochastic Games

Let G = ((V,E), (V1, V2, Vp), U, vinit) be a SG and G ⊆ V a set of goal vertices. If for
every player 2 vertex there is exactly one distribution to choose from, i.e. ∀v∈V |E(v)| = 1,
the SG features at most one level of non-determinism and can as well be interpreted as
a PA. Otherwise, as for PA, the reachability probability is undefined if non-determinism
is present, since it depends on how the non-determinism is resolved in each vertex.
However, in contrast to PA, we now have two possibly adversarial players such that it
does not suffice to distinguish between a minimising and maximising strategy anymore.
Instead, to define a probability measure on paths, two strategies are needed to resolve
both levels of non-determinism separately.

Definition 2.32 (Strategy Pair for SG). Let G = ((V,E), (V1, V2, Vp), U, vinit) be a SG.
A (memoryless, deterministic) strategy pair is a pair (σ1, σ2) of player 1 and player 2
strategies, where

σi : Vi → V, σi(v) 7→ v′ ∈ E(v), i ∈ {1, 2} ,

such that each player resolves non-determinism in his vertices by choosing to which
vertex the system transfers to next.

Analogous to strategies for PA, a pair of strategies σ1 and σ2 induces a DTMC,
denoted by Gσ1,σ2 .

Definition 2.33 (Induced DTMC for SG). Let G = ((V,E), (V1, V2, Vp), U, vinit) be a
SG and (σ1, σ2) be a strategy pair for G. Then, the combination of both (σ1, σ2) and G
induces the DTMC

Gσ1,σ2 = (S,U,Pσ1,σ2 , vinit),

where S := V , and for all s ∈ S, Pσ1,σ2(s) := σ2(σ1(s)).

Note that Gσ1,σ2 in turn induces the probability measure PrGσ1,σ2 on Paths(Gσ1,σ2)
which we conveniently denote by Prσ1,σ2G . As for PA we employ the subscript notation
Prσ1,σ2G,v when considering the reachability from any other vertex v than vinit .

Example 2.34. Reconsider the SG G from Figure 2.7 and let (σ1, σ2) be a strategy
pair for G, where the strategies are defined as

σ1 := {v0 7→ v2,1, v1 7→ v2,3, v2 7→ v2,4, v3 7→ v2,5}
σ2 := {v2,1 7→ vp,2, v2,2 7→ vp,4, v2,3 7→ vp,5, v2,4 7→ vp,6, v2,5 7→ vp,7} .

Employing this strategy pair induces the DTMC Gσ1,σ2 illustrated below.

25

2. Preliminaries

v0

v2v1 v3

0.3, u2

0.7, u1

0.4, u1
0.6, u2

1.0, uτ 1.0, uτ

Figure 2.8.: Induced DTMC Gσ1,σ2

As for PA, the most relevant strategy pairs are the extremal ones which enclose a
whole range of reachability probabilities with respect to a set of goal vertices. Note that
two of the extremal reachability probabilities result from the players’ collaboration:

sup
σ1

sup
σ2

Prσ1,σ2G (♦G)

inf
σ1

inf
σ2

Prσ1,σ2G (♦G).

As a result, for these cases, we can compute probabilistic reachability by treating both
levels of non-determinism like a single level and employing the methods for PA. However,
for the extremal probabilities where both players act adversarially

sup
σ1

inf
σ2

Prσ1,σ2G (♦G)

inf
σ1

sup
σ2

Prσ1,σ2G (♦G),

we have to either determine the respective strategies or use another approach, e.g. a
fixed point characterisation of the probabilities. As for PA, the actual computation of
the extremal strategies is a bit more involved and deferred until chapter 3.

Fixed Point Characterisation

Similar to PA, probabilistic reachability for SG is expressible as a recursive system of
equations. When constructing the system of equations for PA, we had to consider the
maximal (or minimal) weighted sums of the reachability probabilities of the successors
to handle a single level of non-determinism. For two levels of non-determinism, we have
to apply this scheme twice, i.e. let player 1 minimise (or maximise) over the reachability
probabilities of its successor player 2 vertices, while player 2 minimises (or maximises)
over the weighted sum of probabilities of successor player 1 vertices.

26

2.1. Probabilistic Models

Accordingly, in the case of adversary players, the minimal probabilistic reachability
is given by the least fixed point of the valuation transformer pre−+G : [0, 1]V1 → [0, 1]V1 :

pre−+G (w)(v) :=

1 if v ∈ G
0 if v ∈ G0

min
v2∈E(v)

max
vp∈E(v2)

∑
v′∈E(vp)

v̂p(v
′) · w(v′) otherwise

,

where G0 ⊆ S denotes the set of vertices, for which there exists no path to any of
the vertices from G. Analogously, the maximal probabilistic reachability for adversary
players is given by the least fixed point of the valuation transformer pre+−

G : [0, 1]V1 →
[0, 1]V1 :

pre+−
G (w)(v) :=

1 if v ∈ G
0 if v ∈ G0

max
v2∈E(v)

min
vp∈E(v2)

∑
v′∈E(vp)

v̂p(v
′) · w(v′) otherwise

.

For clarity, we also illustrate the valuation transformers for both minimal and maximal
probabilistic reachability in case of collaborating players:

pre−−G (w)(v) :=

1 if v ∈ G
0 if v ∈ G0

min
v2∈E(v),vp∈E(v1)

∑
v′∈E(vp)

v̂p(v
′) · w(v′) otherwise

and

pre++
G (w)(v) :=

1 if v ∈ G
0 if v ∈ G0

max
v2∈E(v),vp∈E(v2)

∑
v′∈E(vp)

v̂p(v
′) · w(v′) otherwise

.

As mentioned before, in the case of collaborating players, we essentially employ the same
methods as for PA. This is especially easy to see considering the structural resemblance
of the respective valuation transformers. Overall, we get

inf
σ1

sup
σ2

Prσ1,σ2G,v (♦G) =
(
lfp≤

(
pre−+G

))
(v)

sup
σ1

inf
σ2

Prσ1,σ2G,v (♦G) =
(
lfp≤

(
pre+−

G

))
(v)

inf
σ1

inf
σ2

Prσ1,σ2G,v (♦G) =
(
lfp≤

(
pre−−G

))
(v)

sup
σ1

sup
σ2

Prσ1,σ2G,v (♦G) =
(
lfp≤

(
pre++

G

))
(v),

to compute probabilistic reachability for SG. [Condon, 1992, Wachter, 2011]

27

2. Preliminaries

2.2. Abstraction

We are interested in computing lower and upper bounds on reachability probabilities
but cannot use the straightforward approach of analysing an actual PA due to its
usually large state space. Ideally, we would like to perform the analysis on an over-
approximating abstraction of the system, which due to lumping of “similar” states,
has a smaller state space but preserves enough information to derive valuable infor-
mation. This section illustrates how the previously introduced formalisms fit into the
abstract interpretation framework [Cousot and Cousot, 1977, Cousot and Cousot, 1979]
by establishing a relation between valuations for PA as the concrete domain and val-
uations for SG as the abstract domain. To this end we recapitulate the formalisms of
[Wachter, 2011].

2.2.1. Relating Concrete and Abstract Domain

To begin with, let S be a set of states and Q be a partition of S, which indicates a
lumping of states, i.e.

S =
⊎
B∈Q

B,

where a block B ⊆ S aggregates a set of states s ∈ S. We write s to denote the unique
block B subsuming a state s, i.e. s ∈ B. Analogously, distributions over states are lifted
to distributions over blocks, i.e. for a π ∈ DistU (S) the lifted distribution is given by
π ∈ DistU (Q) with π(u, s) = π(u, s).

For the computation of probabilistic reachability we employed a fixed point iteration
over the lattice ([0, 1]S ,≤) – our concrete domain of computation. However, lumping
states according to a partition, we cannot assign probabilities to single states anymore
but merely to blocks of states. This naturally gives rise to use the lattice ([0, 1]Q,≤)
as the abstract domain for computation. Given a concrete valuation w ∈ [0, 1]S , an
abstract valuation w# ∈ [0, 1]Q should preserve the property of interest with respect
to the partitioning. For example, if we are interested in the minimal probabilities,
the abstraction must yield an over-approximation of w, i.e. ideally the valuation of a
block should correspond to the smallest valuation of the block’s encompassed states.
Furthermore, to minimise loss of precision, the abstraction after concretisation of an
abstract valuation w# should then again yield w#. The concept of a Galois connection
is known to formalise this very requirements.

Definition 2.35 (Galois Connection). Let (L,vL) and (M,vM) be complete lattices.
A pair (α, γ) of monotonic functions

α : L→M and γ : M → L

is a Galois connection if

∀l∈L l vL γ(α(l)) and ∀m∈M α(γ(m)) vM m

28

2.2. Abstraction

It has been shown [Wachter, 2011], that for the lattices ([0, 1]S ,≤) and ([0, 1]Q,≤)
both (αl, γ) and (αu, γ), with the lower and upper bound abstraction functions

αl : [0, 1]S → [0, 1]Q, αl(w)(B) := inf
s∈B

w(s) for all B ∈ Q

αu : [0, 1]S → [0, 1]Q, αu(w)(B) := sup
s∈B

w(s) for all B ∈ Q,

and the shared concretisation function

γ : [0, 1]Q → [0, 1]S , γ(w#)(s) = w#(b) for all s ∈ S

are Galois connections, which have the desired behaviour.

Example 2.36. The figure below illustrates the application of abstraction and con-
cretisation on a small scale. The concrete domain has a blue tint while the abstract
domain is tinted red.

[0, 1]S

≤ ≤

[0, 1]Q

≤

0.1 0.5 0.2

0.2 0.3 0.9

0.2 1.0 0.0

0.1 0.1 0.2

0.1 0.1 0.2

0.0 0.0 0.0

0.1 0.5 0.2

0.2 0.3 0.9

0.2 1.0 0.0

0.1 0.2

0.0

0.5 0.9

1.0

αl αu
αlγ αuγ

Figure 2.9.: Example of abstraction and concretisation functions usage

29

2. Preliminaries

The dashed groups of states indicate the partitioning of the concrete state space. Note
how the number of states shrinks from nine to three in the process of abstraction and
the abstract valuation properly over-approximates the concrete valuation of subsumed
states. Also, bear in mind that no precision is lost, and the ordering with respect to ≤
is kept, when concretising and abstracting back and forth.

2.2.2. Relating Concrete and Abstract Valuation Transformers

The Galois connections (αl, γ) and (αu, γ) for lower and upper bound abstraction estab-
lish relations between concrete and abstract valuations. In the next step, we establish a
relation between concrete and abstract valuation transformers, such that we can employ
an over-approximating abstract valuation transformer in the abstract domain.

Consider a concrete valuation transformer f . A valid abstraction f# must be over-
approximating in the sense that, applying f# to an abstract valuation w# may not
yield finer results than concretising w# and applying f , i.e. (f ◦γ)(w#) ≤ (γ ◦ f#)(w#)
must hold.

Since there exist many valid abstractions differing in precision, it is desirable to
choose the most precise one. Ideally, no precision should be lost due to the application
of f#, however, losing precision due to abstraction is fine and even intended. That
is, concretising a w#, applying f and subsequent abstraction should yield the same as
computing f#(w#), i.e. α ◦ f ◦ γ = f# instead of just α ◦ f ◦ γ ≤ f#. Figure 2.10
visualises the idea.

[0, 1]S [0, 1]S

[0, 1]Q [0, 1]Q

γ(w#) (f ◦ γ)(w#)

w# f#(w#)

f

γ α

f#

Figure 2.10.: Best transformer f# = α ◦ f ◦ γ

It has been proven [Cousot and Cousot, 1992] that an abstract transformer f# satisfying
f# = α ◦ f ◦ γ is the most precise, valid abstract transformer. Such a transformer is
accordingly called best transformer.

Now, let us look at how this transfers to fixed points. [Wachter, 2011] reused a result
of [Cousot and Cousot, 1992] to show that for a valuation transformer f and the valid

30

2.2. Abstraction

lower and upper bound abstractions f#l , f
#
u , i.e. γ ◦ f#l ≤ f ◦ γ ≤ γ ◦ f

#
u , the following

inequality holds for their fixed points:

γ
(

gfp≥(f#l)
)
≤ lfp≤(f) ≤ γ

(
lfp≤(f#u)

)
.

Employing the best transformers f#l = αl ◦ f ◦ γ and f#u = αu ◦ f ◦ γ, the latter is
equivalent to

γ
(

gfp≥(αl ◦ f ◦ γ)
)
≤ lfp≤(f) ≤ γ

(
lfp≤(αu ◦ f ◦ γ)

)
.

Summing up, this result gives us a declarative way of computing the most pre-
cise bounds, with respect to the employed abstraction and concretisation functions,
for the least fixed point of a valuation transformer f . Exploiting that Prmin

s (♦G) =
(lfp≤pre−G)(s) and Prmax

s (♦G) = (lfp≤pre+
G)(s), establishes the connection to probabilis-

tic reachability for PA and yields bounds for both the minimal and maximal reachability
probabilities:(

γ
(

gfp≥(αl ◦ pre−G ◦ γ)
))

(s) ≤ Prmin
s (♦G) ≤

(
γ
(
lfp≤(αu ◦ pre−G ◦ γ)

))
(s)(

γ
(

gfp≥(αl ◦ pre+
G ◦ γ)

))
(s) ≤ Prmax

s (♦G) ≤
(
γ
(
lfp≤(αu ◦ pre+

G ◦ γ)
))

(s)

2.2.3. Game-based Abstraction

The previous section presented a declarative result to compute bounds for probabilistic
reachability. To enable the actual computation we still need to deduct an impera-
tive approach to computing the best transformer. This section revises the findings of
[Kwiatkowska et al., 2006], which convey that SG are suitable best transformers.

Let A = (S,Act , U,P, sinit) be a PA, Q a partition of S, and consider we are interested
in computing the upper bound of the minimal reachability probability with respect to
some goal set G ⊆ S. According to the previous result, the best transformer for an
abstract valuation w# ∈ [0, 1]Q is given by(

αu ◦ pre−G ◦ γ(w#)
)

(B) = sup
s∈B

pre−G(γ(w#))(s)

= sup
s∈B

min
(a,µ)∈P(s)

∑
s′∈S

µ̂(s′) · (γ(w#))(s′),

where B ∈ Q is a block of the partition. At the top level, the expanded formula
maximises over the different states a block B subsumes. For each of these states,
the formula minimises over the weighted sum of valuations of successor states. This
formula looks quite similar to the value iteration for SG, where the first player respec-
tively maximised over successor player 2 vertices, while the second one minimised the
weighted sum of reachability probabilities of its successors. In fact, it has been shown
[Kwiatkowska et al., 2006] that a SG, where player 1 states correspond to the blocks
B ∈ Q and player 2 states correspond to sets of distributions over Q, provides an
implementation of best transformers.

31

2. Preliminaries

Definition 2.37 (Game-based Abstraction). Let A = (S,Act , U,P, sinit) be a PA and
Q a partition of S. Then the game-based abstraction of A with respect to Q, is defined
as the SG

GA,Q = ((V,E), (V1, V2, Vp), U, vinit)

where

• the player 1 vertices V1 = Q are the blocks of Q,

• probabilistic vertices Vp =
⋃
s∈S Pµ(s) are the distributions occurring in A, lifted

to distributions over blocks,

• the player 2 vertices V2 =
{
Pµ(s) ⊆ DistU (Q)

∣∣∣ s ∈ S}, are sets of probabilistic

vertices, grouped by the state they are available at,

• the initial vertex vinit = sinit is the block subsuming sinit ,

such that

• probabilistic vertices have edges to vertices which can be reached with probability
greater zero,

• player 2 vertices have edges to the probabilistic vertices they contain,

• and a player 1 vertex v1 has edges to those player 2 vertices, which correspond
to behaviours of states in v1, i.e. vertices corresponding to lifted distributions
available at a state s contained in v1,

i.e.

E := {(vp, v1) ∈ Vp × V1 | v̂p(v1) > 0}
∪ {(v2, vp) ∈ V2 × V3 | vp ∈ v2}

∪
{

(v1, v2) ∈ V1 × V2 | ∃s∈v1 v2 = Pµ(s)
}
.

Theorem 2.38 (Game-based Abstraction as Transformer [Kwiatkowska et al., 2006]).
Let A be a PA with states S, G ⊆ S a set of goal states and Q a finite partition of
S such that G is exactly representable, i.e. ∃G#⊆Q G =

⋃
B∈G# B. Then, for a game-

based abstraction GA,Q, the the valuation transformers for GA,Q correspond to the best
transformers for the valuation transformers for A, i.e.

pre−−
G# = αl ◦ pre−G ◦ γ pre+−

G# = αu ◦ pre−G ◦ γ
pre−+

G# = αl ◦ pre+
G ◦ γ pre++

G# = αu ◦ pre+
G ◦ γ.

32

2.2. Abstraction

Example 2.39. Figure 2.11 contrasts the PA JPsimpleK of our example program Psimple

from Listing 2.1 with its game-based abstraction GJPsimpleK,Q given the partition

Q := {{s0}︸︷︷︸
B0

, {s1, s3, s5}︸ ︷︷ ︸
B1

, {s2, s4}︸ ︷︷ ︸
B2

, {s6}︸︷︷︸
B3

},

also indicated by the nodes’ tint, which groups states with equal valuation of phase.

s0 : (0,−1)

µ0

s1 : (1, 2)

µ1

s2 : (3, 2)

µ2

s3 : (1, 1)

µ3

s4 : (3, 1)

µ4

s5 : (1, 0)

µ5

s6 : (2, 0)

µ6

a

1.0, ua,1

b

0.03, ub,2 0.97, ub,1

aτ
1.0, uτ b

0.03, ub,2 0.97, ub,1

aτ
1.0, uτ c

1.0, uc,1

aτ
1.0, uτ

B0

v0

µ0

B1

v1 v2

µ1 µ5

B2

v3 µ2

B3

v4 µ6

1.0, ua,1

0.97, ub,1

0.03, ub,2 1.0, uc,1

1.0, uτ 1.0, uτ

Figure 2.11.: PA JPsimpleK and its game-based abstraction GJPsimpleK,Q

Let us take a look at why the game-based abstraction turns out like this. To begin
with, consider the initial vertex B0. Since B0 subsumes only s0, its only successor is

v0 = Pµ(s0) = {µ0} ,

where µ0 is the distribution µ0, lifted from states to blocks. The successors of a player 2
vertex are the distributions it contains and may choose from. Thus, the only successor
of v0 is µ0. The same argument applies for B3 which, too, contains only one state. The
most interesting block is B1 which subsumes three states. However, since Pµ(s1) =

{µ1} = {µ3} = Pµ(s3), B1 has only two successors{
Pµ(s1),Pµ(s3),Pµ(s5)

}
=
{

Pµ(s1),Pµ(s5)
}

= {{µ1}︸︷︷︸
v1

, {µ5}︸︷︷︸
v2

}.

33

2. Preliminaries

Accordingly, both v1 and v2 have only one successor to choose from. A similar argument
applies to B2, as Pµ(s2) = Pµ(s4).

Assume we are interested in the maximal probability of the system breaking, i.e.
reaching a state where phase = 3. This corresponds to letting G = {s2, s4} be the set
of goal states and determining Prmax (♦G) =

(
lfp≤pre+

G

)
(s0). For the given example it

is easy to see that

Prmax (♦G) = µ0(s1) ·max {µ1(s2) · 1 + µ1(s3) ·max {µ3(s4) · 1 + µ3(s5) · 0}}
= 0.0591.

Here, the computation is simple. However, as models become larger, the computa-
tion becomes more and more complex, rendering this approach infeasible for real-world
examples. Let us compute bounds

γ
(
gfp≥pre−+

G#

)
≤ Prmax (♦G) ≤ γ

(
lfp≤pre++

G#

)
using the game-based abstraction, where G# = B2. Note that for every player 1 and
player 2 vertex except of B1 there is only one successor. Thus, when computing the
lower bound, player 1 will pick v2 to minimise, and for the upper bound, pick v1 to
maximise the reachability probability, which inevitably will yield the bounds 0 and 1.

To give an example of determining bounds by performing the fixed point iteration,
we also compute both the lower and upper bound in the tables below. In iteration 0
we start with the valuation which maps all blocks to 0, and apply the respective value
transformers until a fixed point is reached. Note that due to the numerical nature of the
computation, the fixed point may not be reachable in a finite number of steps. Thus, a
termination condition, like consecutive valuations hardly differing, i.e. difference being
smaller than some δ, is used to enforce termination in a finite number of steps.

Iteration B0 B1 B2 B3

#0 0.0 0.0 0.0 0.0
#1 0.0 0.0 1.0 0.0
#2 0.0 0.0 1.0 0.0

(a) Fixed point iteration for pre−+
G#

Iteration B0 B1 B2 B3

#0 0.0 0.0 0.0 0.0
#1 0.0 0.3 1.0 0.0
#2 0.3 0.0591 1.0 0.0
...

...
...

...
...

#120 0.973 0.974 1.0 0.0
#121 0.974 0.975 1.0 0.0

...
...

...
...

...
∞ 1.0 1.0 1.0 0.0

(b) Fixed point iteration for pre++
G#

Table 2.1.: Computing bounds for Prmax (♦G)

Although the resulting bounds [0, 1] are correct, i.e. 0 ≤ 0.0591 ≤ 1, they are not
informative. This is due to the fact that our partition Q was too coarse. We would

34

2.3. Multi-Terminal Binary Decision Diagrams

have gotten a better upper bound if there was no loop at B1. This can be achieved by
refining Q so that s1 and s3 are in different blocks.

2.2.4. Predicate Abstraction

In Section 2.2.1 we introduced the theoretical background to relate the concrete domain
([0, 1]S ,≤) with the abstract domain ([0, 1]Q,≤), where states are lumped together into
blocks, according to a partition Q – an approach known as partition abstraction.

As we have seen in Example 2.39 the precision of the abstraction is governed by
the choice of Q, i.e. Q := S does not even introduce loss of precision. This raises the
question of how to choose Q, i.e. when states are to be considered “similar”.

Predicate abstraction [Graf and Säıdi, 1997] is a special kind of partition abstraction
where Q is induced by a set of predicates. A predicate p for a set S is an indicator
function p : S → B partitioning S into elements s for which p(s) = true and this for
which p(s) = false. Accordingly, n predicates suffice to partition S in up to 2n blocks.

In the context of a PA JP K given by a probabilistic program P , S corresponds to states
and a predicate p ∈ BExprvar is a Boolean expression over the program’s variables. Let
P be a set of n predicates. The induced partition Q is then a set of blocks Bb1,...,bn ,
where

s ∈ Bb1,...,bn ⇐⇒ p1(s) = b1, . . . , pn(s) = bn.

Example 2.40. Consider the partition Q from Example 2.39. It was derived by group-
ing states with equal valuation of phase, and thereby was already an example of predi-
cate abstraction as Q is induced by the predicates

P = {phase = 0︸ ︷︷ ︸
p1

, phase = 1︸ ︷︷ ︸
p2

, phase = 2︸ ︷︷ ︸
p3

, phase = 3︸ ︷︷ ︸
p4

},

where B0 := B1,0,0,0, B1 := B0,1,0,0, B2 := B0,0,0,1 and B3 := B0,0,1,0.

2.3. Multi-Terminal Binary Decision Diagrams

The approaches presented so far, assumed that the models are given in an explicit
representation, e.g. single states, labels and functions over them. However, as stated
earlier, such enumerative representations suffer to the state space explosion problem
since, even for the simplest real-world systems, their representation may be too large to
fit into memory.

Besides sparse representations, e.g. [Katoen et al., 2009], one of the most wide-spread
approaches to approach this problem is using symbolic representations like Binary De-
cision Diagrams (BDDs) [Bryant, 1986] and their extension Multi-Terminal Decision
Diagrams (MTBDDs) [Fujita et al., 1997, Bahar et al., 1997], which allows to represent
any function with a finite range of values, instead of merely 0 and 1. The lower memory
usage of such a representation is attributed to the storage scheme of the data structure,
which exploits regularities in the function.

35

2. Preliminaries

2.3.1. Concept

Let Var = {x1, . . . , xn} be a set of Boolean variables and x1 ≺ x2 ≺ · · · ≺ xn their total
order. An MTBDD D over x = (x1, . . . , xn) is a rooted, acyclic digraph, whose semantics
is a function fD : Bn → D. Since we employ MTBDDs to represent probabilistic models
and perform quantitative analyses we adopt D := R.

The vertices of D are referred to as nodes and partitioned into terminal nodes, which
are the leaves of the graph, and the remaining non-terminal nodes. While a terminal
node v is labelled with a real number val(v) ∈ R and has no successors, a non-terminal
v node is labelled with a variable xi = var(v) ∈ Var and has exactly two successors
– denoted by then(v) and else(v). Additionally, the successor relation respects the
variable order, i.e. for any two non-terminal nodes vi and vj , where vj is a successor of
vi, var(vi) ≺ var(vj) holds.

The value of fD(x1, . . . , xn) is determined by tracing a path from the root to a terminal
node, where for each non-terminal node v the successor then(v) is taken if var(v) is set
to 1, or else(v) if var(v) is set to 0. The value val(v) of a terminal node v at the
end of the path, which is induced by the variables’ valuations, is fD(x1, . . . , xn). For
convenience we use the notation fD [x1 = 0, x3 = 1, x2 = 0] to denote fD(0, 0, 1), since
it is independent of the actual variable order.

Example 2.41. Figure 2.12 illustrates the storage scheme and the impact of the vari-
ables’ ordering, opposing two MTBDDs which represent the same function.

v0

v1 v2

v3

x1

x2

x3

0.5 1

(a) Ordering x1 ≺ x2 ≺ x3

u0

u1 u2

u3 u4 u5 u6

x3

x2

x1

0.5 1

(b) Ordering x3 ≺ x2 ≺ x1

x1 x2 x3 fD

0 0 0 0
0 0 1 0
0 1 0 0.5
0 1 1 1
1 0 0 0.5
1 0 1 1
1 1 0 0
1 1 1 0

(c) Represented function

Figure 2.12.: Two MTBDDs representing the same function

Let us first consider the MTBDD from Figure 2.12a. The labelling val(v) of a terminal
node v is illustrated by the value it contains. In contrast, the labelling var(v) of a non-
terminal node v corresponds to the variable annotated at the same level, e.g. x2 =
var(v1). The edges visualise the successor relation, i.e. the solid edges correspond to
the then-successors while the dashed ones represent the else-successors. Note that it is
common to omit illustrating the terminal node with value 0 and its incoming edges for
the purpose of clarity, e.g. val(else(v1)) = 0 and then(v1) = v3.

36

2.3. Multi-Terminal Binary Decision Diagrams

Both the MTBDD from Figure 2.12a and 2.12b represent the function defined in 2.12c.
For example consider the valuation {x1 = 1, x2 = 0, x3 = 0}. In the left MTBDD, this
induces a path v0v2v3else(v3) where val(else(v3)) = 0.5 while in the right one, the
respective path is u0u1u3then(u3) with val(then(u3)) = 0.5.

The most striking observation though, is that the variable order has an significant
impact on the size of a MTBDD. In our case, the flipping of the ordering increased the
number of non-terminal nodes by 75%. While the absolute number corresponding to
the 75% increase is rather small for this simple example, it may significantly affect the
necessary memory for real-world MTBDDs.

When talking about MTBDDs, we assume that they are fully reduced, i.e. contain no
redundant nodes. This implies that no nodes have identical then- and else-successors
and shared nodes are merged. For an in-depth description, see [Baier and Katoen, 2008].

Definition 2.42 (Cofactor). Let D be a MTBDD over x = (x1, . . . , xn). Then, its
cofactor D|xi=b, b ∈ B is an MTBDD over (x1, . . . , xi−1, xi+1, . . . , xn) representing the
function fD(x1, . . . , xi−1, b, xi+1, . . . , xn).

Using the notion of cofactors, the function fD can be expressed recursively as

fD = x1 · fM |x1=1
+ (1− x1) · fM |x1=0

.

2.3.2. Operations

Since we want to employ MTBDDs not only for storage but for all our computations
on the system, we need some operations on MTBDDs. In the following, we sketch the
operations, which will be needed later, without going into detail about their implemen-
tation. We assume that D, D1 and D2 are MTBDDs over x = (x1, . . . , xn). Bear in
mind, that we treat BDDs as MTBDDs.

• Const(c), c ∈ R creates a MTBDD which represents the constant function c. It
consists of a single terminal node v, such that val(v) = c. We conveniently denote
Const(c) by cD.

• Setz(b1, . . . , bm), |z| = m creates a BDD over z, which represents the function

f(z) =

{
1 if z = (b1, . . . , bm)

0 otherwise

• ITE(D,Dthen ,Delse), creates a MTBDD over (x) with “if-then-else” semantics,
i.e.

fD(x) =

{
fDthen

(x) if fD(x) = 1

fDelse
(x) otherwise

.

• We lift operations over the reals to the MTBDD domain, such that D1⊕D2, where
⊕ ∈ {+,−, ∗, /}, yields the MTBDD representing the function fD1 ⊕ fD2 . Note
that the unary minus operation is lifted too.

37

2. Preliminaries

• Analogously, we lift both binary and unary Boolean operations to BDDs, e.g. ¬D
yields the BDD representing the function ¬fD.

• Furthermore, we lift relational operators (≤, 6= etc.) to MTBDDs, such that for
example D 6= 0D returns the BDD representing the function fD 6= 0.

• Abstract(⊕, z,D), abstracts from the variables in z ⊆ x by combining all co-
factors for these variables by ⊕. For this to work, ⊕ must be a commutative and
associative binary operator, depending on the type of D either over the reals or
Booleans. For example, Abstract(∨, (x1, x2),D) returns the BDD representing
the function

fM |x1=0,x2=0
∨ fM |x1=0,x2=1

∨ fM |x1=1,x2=0
∨ fM |x1=1,x2=1

.

• ExistsAbstract(z,D) := Abstract(∨, z,D), roughly speaking, yields the func-
tion ∃valuation of z fD(x) = 1, over the restricted variable set x \ z.

• UniversalAbstract(z,D) := Abstract(∧, z,D), analogously returns the func-
tion ∀valuation of z fD(x) = 1, over the restricted variable set x \ z.

• MinAbstract(z,D) := Abstract(min, z,D), minimises the function over z, i.e.
returns the function minvaluation of z fD(x), over the restricted variable set x \ z.

• MaxAbstract(z,D) := Abstract(max, z,D) is dual to MinAbstract.

• ReplaceVar(xi, z,D), returns the MTBDD D′ over the modified variables x′ =
(x1, . . . , xi−1, z, xi+1, . . . , xn) such that fD′(b1, . . . , bn) = fD(b1, . . . , bn) holds for
all (b1, . . . , bn) ∈ Bn. This operation can be lifted to allow replacing sets of
variables.

2.4. Satisfiability Modulo Theories

Satisfiability Modulo Theories (Smt) [Ganzinger et al., 2004] is an extension of the well-
known Boolean satisfiability (Sat) problem [Cook, 1971]. While the Sat problem is, to
determine whether there exists a satisfying valuation for a Boolean formula in conjunc-
tive normal form, the Smt problem allows the utilisation of more expressive theories, e.g.
real and linear integer arithmetic (RIA and LIA), arrays and uninterpreted functions.

Although even the plain Sat problem is known to be NP-complete, state-of-the-
art Smt-solvers like Z3 [de Moura and Bjørner, 2008] solve LIA instances with several
thousand constraints in mere seconds and have successfully been applied in verification
[Biere et al., 1999, Clarke et al., 2001, Ball and Rajamani, 2002].

In our case, we will employ Smt-solving to determine the abstraction of a PA JP K
for a program P directly from P , without computing JP K in the first place. This will
be achieved by encoding the programs semantics in terms of a LIA formula, such that
its solutions correspond to valid system behaviour. This is similar to the approach for
“conventional” predicate abstraction [Lahiri et al., 2007].

38

3. Symbolical Model Checking with
Menu-games

This chapter builds upon the preliminaries and introduces the menu-based abstraction
as an abstraction superior to game-based abstraction in terms of size and computational
cost. We elaborate on the symbolical representation of menu-based abstraction in terms
of MTBDDs and illustrate how it can be derived from a probabilistic program, without
constructing its semantics in the first place, by taking advantage of Smt-solving. Subse-
quently, we present a novel approach to solving and refining the menu-based abstraction
in a fully symbolical way.

3.1. Menu-based Abstraction

In the previous chapter, we have seen that game-based abstraction provides an imple-
mentation of best transformers for probabilistic reachability. However, computing the
game-based abstraction has two major drawbacks, which are closely related.

Firstly, in the worst case, the number of player 2 vertices grows exponentially in the
number of probabilistic vertices. This is due to the fact, that the number of player 2
vertices is equal to the number of distinguishable behaviours. According to Definition
2.37, the number of player 2 vertices is

|V2| =
∣∣∣{Pµ(s) ⊆ DistU (Q) | s ∈ S

}∣∣∣
=

∑
v1∈V1

∣∣∣{Pµ(s) ⊆ DistU (Q) | s ∈ v1
}∣∣∣ .

However in the worst case, since player 2 vertices are subsets of probabilistic vertices, a
player 1 vertex may have up to 2|Vp| successors. Combined with the number of player 1
vertices this amounts to

|V2| ∈ O
(
|V1| · 2|Vp|

)
.

Secondly, experiments have shown that the computation of player 2 vertices becomes
increasingly expensive with increasing number of commands in a program. This is tied
to the fact that compounds of commands have to be considered, since a player 2 vertex
is determined by a concrete valuation of the respective player 1 vertex and the set of
enabled concrete commands for this valuation [Kattenbelt et al., 2008].

Altogether, it is desirable for a “superior” abstraction to not exhibit exponential
growth in player 2 vertex numbers and to allow for isolated abstraction of commands of
a probabilistic program. This gives rise to the menu-based abstraction [Wachter, 2011]

39

3. Symbolical Model Checking with Menu-games

which attends to these issues at the expense of not being a best transformer implemen-
tation, i.e. yielding at most as precise bounds as game-based abstraction.

3.1.1. Concept

Just as game-based abstraction, menu-based abstraction is a SG where the player 1
vertices correspond to a partition Q. The main difference and key is the flipping of the
semantics of the players’ choices.

In game-based abstraction, player 2 successor vertices of a player 1 vertex v1 cor-
responded to the distinguishable behaviours of states subsumed by v1. Respectively
the player 1 choice resolved the non-determinism introduced by abstraction. In turn,
player 2 chose between distributions over Q for a group of states which behave “similar”,
thereby resolving the non-determinism introduced by the menu of commands enabled
for this group of states. Menu-based abstraction swaps the meanings of both choices,
such that player 1 chooses from a menu of commands and player 2 resolves the non-
determinism introduced by abstraction. To avoid player 2 choosing a behaviour, where
the previously chosen command is not enabled a fix will have to be applied, which will
cause the abstraction to be generally less precise than the game-based one. With this
in mind we introduce the respective valuation transformers for PA.

Maximal Menu-based Abstraction

To begin with, we focus on the concrete transformer pre+
G for maximal probabilistic

reachability for a PA JP K = (S,Act, U,P, sinit), where JP K is given by a program P and
G ⊆ S is the set of goal states.

In contrast to the value transformer for game-based abstraction, we do not maximise
over the successor states but instead the commands, uniquely identified by their la-
belling, leading to them. Thus, to determine the maximal reachability probability in a
state s ∈ S a concrete transformer must choose an maximising action a ∈ Act enabled
in s, i.e.

pre+
G(w)(s) = max

a∈En(s)
pre[a]+G(w)(s),

where pre[a]+G is a sub-transformer returning the reachability probability given action
a was chosen. Similar to conventional value transformers for SG, for a valuation w ∈
[0, 1]S , pre[a]+G(w)(s) returns 1 if s ∈ S is a goal state, 0 if no path from s to any goal
state exists and the weighted sum of the distribution reachable by a otherwise. However,
if a is not enabled in s, i.e. a /∈ En(s), naturally 0 must be returned:

pre[a]+G(w)(s) :=

1 if s ∈ G and s ∈ En(a)

0 if s ∈ G0 or s /∈ En(a)

max
(a,µ)∈P(s)

∑
s′∈S

µ̂(s′) · w(s′) otherwise
,

where G0 ⊆ S denotes the set of states, for which there exists no path to any of the
states from G. The respective valid maximal menu-based abstraction transformers are

40

3.1. Menu-based Abstraction

obtained by the best transformer construction. As a result the lower and upper bounds
for maximal probabilistic reachability with respect to G are given by

prel+
G#(w#)(B) := max

a∈En(B)

(
αl ◦ pre[a]+G ◦ γ

)
(w#)(B)

preu+
G#(w#)(B) := max

a∈En(B)

(
αu ◦ pre[a]+G ◦ γ

)
(w#)(B),

for w# ∈ [0, 1]Q and B ∈ Q. As for game-based abstraction G# is an exact representa-
tion of G, i.e. ∃G#⊆Q G =

⋃
B∈G# B. [Wachter, 2011]

Minimal Menu-based Abstraction

The concrete value transformer pre[a]−G for minimal probabilistic reachability is con-
structed analogously. The main difference to its counterpart, besides minimising over
actions, being that it has to return 1 if the respective action a is not enabled in s, i.e.
a /∈ En(s) to ensure that disabled actions have no effect:

pre[a]−G(w)(s) :=

1 if s ∈ G or s /∈ En(a)

0 if s ∈ G0 and s ∈ En(a)

min
(a,µ)∈P(s)

∑
s′∈S

µ̂(s′) · w(s′) otherwise
.

Accordingly, using the best transformer construction, the minimal menu-based abstrac-
tion yields the lower and upper bounds

prel−
G#(w#)(B) := max

a∈En(B)

(
αl ◦ pre[a]−G ◦ γ

)
(w#)(B)

preu−
G#(w#)(B) := max

a∈En(B)

(
αu ◦ pre[a]−G ◦ γ

)
(w#)(B),

for w# ∈ [0, 1]Q and B ∈ Q, which are valid transformers, too. [Wachter, 2011]

3.1.2. Menu-game as Implementation of Menu-based Abstraction

Note that the constructed transformers only give us a declarative way of computing
abstract transformers. We still need a SG which implements them. The menu-based
abstraction has been been shown to represent such an implementation.

Definition 3.1 (Menu-game). Let P be a probabilistic program, JP K = (S,Act , U,P, sinit)
its semantics and Q a partition of S. The Menu-game is a SG

ĜJP K,Q = ((V,E), (V1, V2, Vp), U, vinit) ,

where

• player 1 vertices V1 := Q]
{
v⊥1
}

, correspond to the partition and an auxiliary
trap vertex,

41

3. Symbolical Model Checking with Menu-games

• player 2 vertices V2 := {(v1, a) ∈ V1 ×Act | a ∈ En(v1)}]
{
v⊥2
}

are induced by
the actions enabled in player 1 vertices,

• probabilistic vertices Vp :=
{

P(s, a) ∈ DistU (Q) | s ∈ S, a ∈ En(v1)
}
]
{
v⊥p
}

, where

v⊥p = 1.0 : (uτ , v
⊥
1), are essentially the lifted distributions occurring in JP K,

• and the initial vertex vinit = sinit corresponds to the block containing sinit .

The edges are defined by

E := {(v1, v2) ∈ V1 × V2 | v2 = (v1, a), a ∈ En(v1)}

∪
{

(v2, vp) ∈ V2 × Vp | v2 = (v1, a), ∃s∈v1 vp = P(s, a)
}

∪
{

(v2, v
⊥
p) ∈ V2 × Vp | v2 = (v1, a), ∃s∈v1 a /∈ En(s)

}
∪

{
(v⊥1 , v

⊥
2), (v⊥2 , v

⊥
p)
}

∪
{

(vp, v
′) ∈ Vp × V1 | v̂p(v′) > 0

}
.

Note the (artificial) introduction of a trap state v⊥1 , which once reached cannot be left
due to the fact that it only has the self-loop v⊥1 v

⊥
2 v
⊥
p . This state is added, to implement

the value transformers’ pre[a]+G and pre[a]−G behaviour of returning 0 and 1 when a
disabled action is chosen. For this purpose, v⊥1 can only reached when, for vertex a
v2 ∈ V2, player 2 chooses an action which is not enabled in v2. Additionally, we have
to ensure that the probabilistic reachability of some G# from v⊥1 is 0 for maximal and

1 for minimal reachability. This is realised by considering v#1 as part of the set of goal
states G, when computing minimal reachability. For maximal reachability nothing has
to be adapted since the trap state cannot reach G by definition.

The main result of [Wachter, 2011] is that with these considerations our value trans-
formers for SG are equivalent to the transformers of menu-based abstraction:

pre−−
G#∪{v⊥1 }

= pre l−
G# pre−+

G#∪{v⊥1 }
= preu−

G#

pre+−
G# = pre l+

G# pre++
G# = preu+

G#

The proof is similar to the one for game-based abstraction, as it argues that the ex-
pressions gained from the abstract valuation transformers correspond to the structure
of the Menu-game.

Example 3.2. Figure 3.1 compares our running example PA JPsimpleK with its Menu-

game ĜJPsimpleK,Q where Q is again induced by the predicates

P = {phase = 0︸ ︷︷ ︸
p1

, phase = 1︸ ︷︷ ︸
p2

, phase = 2︸ ︷︷ ︸
p3

, phase = 3︸ ︷︷ ︸
p4

},

42

3.1. Menu-based Abstraction

i.e.
Q := {{s0}︸︷︷︸

B0

, {s1, s3, s5}︸ ︷︷ ︸
B1

, {s2, s4}︸ ︷︷ ︸
B2

, {s6}︸︷︷︸
B3

},

and for clarity also indicated by the vertices’ colours. Note that the trap vertex is not
part of Q and accordingly has inverted colours. Bear in mind that the edges between
player 1 and player 2 vertices are actually not labelled. However, since they represent
commands of a PA we add the command’s labelling, such that it is easier to see the
relation.

s0 : (0,−1)

µ0

s1 : (1, 2)

µ1

s2 : (3, 2)

µ2

s3 : (1, 1)

µ3

s4 : (3, 1)

µ4

s5 : (1, 0)

µ5

s6 : (2, 0)

µ6

a

1.0, ua,1

b

0.03, ub,2 0.97, ub,1

aτ
1.0, uτ b

0.03, ub,2 0.97, ub,1

aτ
1.0, uτ c

1.0, uc,1

aτ
1.0, uτ

B0

v0

µ0

B1

v1 v2

µ1 µ5

B2

v3 µ2

B3

v4 µ6

v⊥p

v⊥1 v⊥2

a

1.0, ua,1

b
0.97, ub,1

0.03, ub,2

1.0, uτ

aτ

c

1.0, uc,1

aτ
1.0, uτ

aτ
1.0, uτ

Figure 3.1.: PA JPsimpleK and its menu-based abstraction ĜJPsimpleK,Q

Let us walk through the derivation of this Menu-game. First of all, consider the initial
vertex B0 which contains only the state s0. Since a is enabled in s0, so it is in B0 and
leads to the player 2 state v0 = (B0, a). v0 has only one successor, since there is only one
distinguishable behaviour in B0 – the distribution µ0 = P(s0, a). The thought process
for B3 is identical and thus omitted.
B1 contains three states, of which s1 and s3 have b enabled while in s5 there is only

c enabled. Accordingly, B1 has one successor for each of these actions. Let us focus
on the player 2 state v1 = (B1, b). In v1 player 2 may choose from the distinguishable
behaviours of states in B1 – the behaviours of s1, s3 and s5. For the states s1 and s3,

43

3. Symbolical Model Checking with Menu-games

where b is enabled, there is only one distinguishable behaviour though, since µ1 = µ3.
This corresponds to the µ1 successor. However, choosing a state where c is not enabled,
i.e. s5, leads to the trap-cycle. Dually, v2 has the successor µ5 which corresponds to the
behaviour of s5, but also an edge to the trap-cycle, since there are some states in B1

which do not have c enabled.
Assume we are interested in the maximal probability of the system breaking, i.e. reach-

ing a state where phase = 3. In a previous example we have seen that Prmax (♦G) =
0.0591, where G = {s2, s4}. Let us compute respective bounds

γ
(
gfp≥pre+−

G#

)
≤ Prmax (♦G) ≤ γ

(
lfp≤pre++

G#

)
using the Menu-game from Figure 3.1, where G# = B2.

For the lower bound, player 1 will try to maximise the probability, while player 2
aims to minimise it. Accordingly, player 2 will always choose the v⊥p successor for the
vertices v1 and v2 such that it does not even matter which action player 1 chooses for
B1. The lower bound is over-approximated by 0.

For the upper bound, both players try to maximise the probability. As a result, both
players will collaboratively choose the path-fragment v1µ1 for B1 and loop in B1 until
µ1 forwards to B2 eventually. The upper bound is respectively given by 1.

As in Example 2.39, it turns out that the partition is too coarse to allow for more
precise bounds. That was actually to be expected since the menu-based abstraction does
not correspond to the best transformer and thus is at most as precise as game-based
abstraction, given the same partition Q.

3.2. Representing Menu-games via MTBDDs

Let P be a probabilistic program, JP K = (S,Act , U,P, sinit) its semantics and

ĜJP K,Q = ((V,E), (V1, V2, Vp), U, vinit)

its Menu-game with respect to the partition Q, which is induced by a set of predicates
P = {p1, . . . , pn}. The general idea is to interpret the Menu-game as a transition
function

δ : V1 ×Act ×Opt ×Upd × V1 → R,

where

• the set of options Opt is the player 2 equivalent to actions, identifying player 2
choices, i.e. there exists an injective function h : V2 ×Opt → Vp such that

∀v2∈V2 ∀vp∈E(v2) ∃o∈Opt h(v2, o) = vp,

e.g. Opt = Vp and h(v2, vp) = vp,

• the set of updates Upd := {ui | ua,i ∈ U}]{uτ}, which, in contrast to the updates
U in JP K, are not associated with actions anymore,

44

3.2. Representing Menu-games via MTBDDs

such that

δ(v, a, o, u, v′) :=

{
p if ∃v,v′∈V1∃a∈En(v)∃o∈Opt∃u∈U µ = h ((v, a), o) , µ(u, v′) = p, p > 0

0 otherwise

Note that we split the original set of updates U into Act and Upd since an update
ua,i ∈ U is uniquely defined by an action a ∈ Act and an update index ui ∈ Upd . In
practice, such a splitting requires less space, since most of the time |Act |+ |Upd | is less
than |U |.

However, we cannot represent δ in terms of a MTBDD yet, as its signature is not
of the required form, i.e. not δ : Bk → R. To this end we need a suitable encoding.
A finite set F can be encoded in terms of m = dlog2 |F |e Boolean variables using an
any injective function enc : F → Bm. We denote the respective encoding functions for
actions, options and updates by encAct , encOpt and encUpd .

For vertices in V1 we employ a more natural encoding. In Section 2.2.4, we have seen
that every block is identified by a vector (b1, . . . , bn) ∈ Bn of predicates. Introducing a
Boolean variable for every predicate, the encoding encB of a block Bb1,...,bn is defined
as

encB : Q→ Bn, encB(Bb1,...,bn) 7→ (b1, . . . , bn) .

Considering that the trap vertex v⊥1 is part of V1 too, but has no relation to the predi-
cates, we define the encoding encV for a v ∈ V1 as

encV : V1 → Bn+1, encV (v) =

{
(0, encB(v)) if v 6= v⊥1
(1, 0n) otherwise

.

Overall, an MTBDD D encodes the Menu-game ĜJP K,Q if it represents the function δ,
i.e. for fD(src, act , opt , upd , dst) it holds

fD
(
encv(v), encAct(a), encOpt(o), encUpd (u), encv(v

′)
)

= δ
(
v, a, o, u, v′

)
.

Example 3.3. Figure 3.2 illustrates a Menu-game ĜJP K,Q similar to ĜJPsimpleK,Q but

simpler, where Q is induced by the set of predicates P = {p1}, and its symbolical
encoding in terms of a MTBDD D.

In the first place, let us determine which sets have to be encoded. The actions Act
correspond to the player 1 choices and are given by Act = {aτ , a, b}. Upd is derived from
U by dropping the actions from all updates ua,i and adding uτ , i.e. Upd = {uτ , u1, u2}.
Note that the options o1 and o2 suffice to encode the Menu-game, i.e. Opt = {o1, o2}.
We indicate a suitable mapping h : V2×Opt → Vp by the options at the player 2 edges.

Now, we can infer the the number of variables needed. Since Act contains three
values, we need two Boolean variables act = (act1, act0) to encode them. The same
reasoning applies to Upd , such that we get upd = (upd1, upd0). To encode both values
in Opt , a single Boolean variable opt0 suffices. Since the partition Q is induced by a
single predicate p1, we need two variables src = (src⊥, srcp1) to encode a source vertex.
Destination vertices are dually encoded by dst = (dst⊥, datp1).

45

3. Symbolical Model Checking with Menu-games

Finally, we define encodings for Act , Opt and Upd :

encAct := {aτ 7→ (0, 0) , a 7→ (0, 1) , v 7→ (1, 0)}
encOpt := {o1 7→ (0) , o2 7→ (1)}
encUpd := {uτ 7→ (0, 0) , u1 7→ (0, 1) , u2 7→ (1, 0)} .

Bear in mind, that the encoding for player 1 vertices is induced by the predicates, e.g.
encv(B1) = (0, 1).

B0

v⊥1

B1

a

o1

0.3, ua,2

0.7, ua,1

o2

b

o1

1.0, uτ

o2

1.0, ub,1

aτ

o1

aτ

o1

1.0, uτ

(a) Menu-game ĜJP K,Q

0.7 0.31.0

src⊥

srcp1

act1

act0

opt0

upd1

upd0

dst⊥

dstp1

(b) MTBDD D encoding ĜJP K,Q

Figure 3.2.: A Menu-game and its MTBDD

To get a better idea of which valuations of the MTBDD correspond to which path
fragments, we coloured some of them equally. For example consider the green valuation
of the MTBDD. It corresponds to the green path fragment of ĜJP K,Q, because

fD[src = (0, 0)︸ ︷︷ ︸
encv(B0)

, act = (1, 0)︸ ︷︷ ︸
encAct (b)

, opt = (0)︸︷︷︸
encOpt (o1)

, upd = (0, 0)︸ ︷︷ ︸
encUpd (uτ)

, dst = (1, 0)︸ ︷︷ ︸
encv(v⊥1)

] = 1.0

and the game’s induced transition function δ returns δ(B0, b, o1, uτ , v
⊥
1) = 1.0, too.

46

3.3. Construction of Menu-games from Probabilistic Programs

Note that the variable order used in Figure 3.2b is not the one which yields the smallest
MTBDD but rather the one which yields the most human-readable MTBDDs. The
variable ordering corresponds to the order in which we read the game’s transitions.

3.3. Construction of Menu-games from Probabilistic Programs

Formally, menu-based abstraction is defined on the PA semantics of a probabilistic
program. Thus, until now, to determine the Menu-game of a probabilistic program
P with respect to a set of predicates P, we had to take the detour of computing the
program’s explicit semantics JP K. In this section, based on [Wachter, 2011], we elaborate
on how Smt solvers can be utilised to directly obtain the abstract semantics without
constructing the explicit state space in the first place.

3.3.1. Logical Characterisation of Concrete Semantics

To begin with, let us reformulate the explicit semantics JP K of a probabilistic program
P = (Var ,VarType,ActP ,Cmd , init) in terms of linear integer arithmetic formulae,
such that the computation of JP K can be carried out by Smt solvers.

The program’s behaviour is governed by the semantics of its commands. Definition
2.27 already gives us an explicit method to compute the semantics JcK of a command c:

[a] g → p1 : Var ′ = E1 + · · ·+ pk : Var ′ = Ek.

However, aiming for a symbolical description, we reformulate
(
s0, a,

k⊕
i=1

pi : (ua,i, si)

)∣∣∣∣∣∣
s0, . . . , sk ∈ S(P)
s0 |= g “guard”
∀i∈{1,...,k} si = λvar∈Var JEi(var)Ks0 “updates”

in terms of transition constraints, which relate source- and destination-state instances
of the programs variables.

It is a wide-spread convention to use primed variables for source- and unprimed vari-
ables for destination-state variables instances. For example an assignment incrementing
x can be characterised by the expression x′ = x + 1. Generally, commands may have
several destinations though, such that a corresponding expression must contain several
instances of destination-state variables.

Knowing that the source-states of a command are those which satisfy its guard g,
we can characterise them by g [Var/Var0], which denotes the simultaneous substitu-
tion of variables Var by the source-state variables instance Var0 in the expression g.
Accordingly, the effect of an assignment Ei is expressed in terms of a conjunction of
equalities Var i = Ei [Var/Var0], which corresponds to evaluating the expression in the
source state and binding the resulting valuation to the i-th destination-state variables
instance.

47

3. Symbolical Model Checking with Menu-games

Definition 3.4 (Transition Constraint [Wachter, 2011]). The concrete transitions of a
command c, given by

[a] g → p1 : Var ′ = E1 + · · ·+ pk : Var ′ = Ek,

are expressed by the transition constraint

Rc = g [Var/Var0] ∧
deg(c)∧
i=1

(Var i = Ei [Var/Var i]) .

Using this result, the computation of JcK amounts to finding all solutions of Rc:

JcK =

{(
s0, a,

k⊕
i=1

pi : (ua,i, si)

)∣∣∣∣∣(s0, . . . , sk) |= Rc
}
.

Example 3.5. Let us have a look on how this can be applied to the command cb

[b] phase = 1 & run > 0→ 0.97 : (run ′ = run − 1) + 0.03 : (phase ′ = 3)

from Listing 2.1. A corresponding transition constraint must refer to three variable sets
Var0 = {phase0, run0}, Var1 = {phase1, run1} and Var2 = {phase2, run2}, where Var0

is the source-state variables instance and the others are the destination-state variables
instances – one instance per assignment. The transition constraint for cb is given by

Rcb = g [Var/Var0] ∧Var1 = E1 [var/Var0] ∧Var2 = E2 [Var/Var0]

= phase0 = 1 ∧ run0 > 0

∧ phase1 = phase0 ∧ run1 = run0 − 1

∧ phase2 = 3 ∧ run2 = run0.

This constraint symbolically characterises the semantics of cb, since its solutions induce
JcK. For example, the solution

Var0 = {phase0 = 1, run = 2}
Var1 = {phase1 = 1, run = 1}
Var2 = {phase2 = 3, run = 2}

corresponds to the tuple (s, b, µ) ∈ JcbK which we computed (explicitly) in Example
2.28.

48

3.3. Construction of Menu-games from Probabilistic Programs

3.3.2. Logical Characterisation of Abstract Semantics

Now that we have a logical characterisation of the concrete semantics JcK of a command
c, we illustrate how this can be used to obtain a logical characterisation of its abstract
semantics JcK#.

When composing concrete states into blocks we lift distributions with respect to the
partition Q. As a result, the partition abstracted transitions in JcK# consist exactly of
the lifted concrete transitions

JcK# := {(B, a, µ) | ∃s∈B (s, a, µ) ∈ JcK} .

However, this is not a logical characterisation, yet.
We begin by formalising the notion of predicate abstraction in terms of LIA formulae.

Section 2.2.4 illustrated that for a set of predicates P = {p1, . . . , pn}

s ∈ Bb1,...,bn ⇐⇒ p1(s) = b1, . . . , pn(s) = bn.

Identifying blocks with bit-vectors (b1, . . . , bn) we get the constraint

B :=
∧
p∈P

(bi ⇐⇒ pi) ,

whose solutions induce the set of blocks. Accordingly, the set of blocks satisfying an
expression e over Var is logically characterised by the expression e∧B, whose solutions

α(JeK) := {(b1, . . . , bn) | b1, . . . , bn |= ∃Var e ∧ B}

correspond to the blocks’ identifiers. Applying the block characterisation to Rc, i.e.
making the block identifiers the single free variables and existentially quantifying over
the rest, yields us the abstract transition constraint.

Definition 3.6 (Abstract Transition Constraint [Wachter, 2011]). Let c be a command
with k = deg(c), Rc its transition constraint and P = {p1, . . . , pn} a set of predicates.
The abstract transition constraint is then given by

R#
c := ∃Var0,...,VarkRc ∧

k∧
j=0

Bj

with
Bj :=

∧
pi∈P

(
bji ⇐⇒ pi [Var/Var j]

)
,

where variables b0i , 1 ≤ i ≤ n identify the source-block and bji , 1 ≤ i ≤ n identify the
j-th destination-block. Employing the notion of weakest precondition [Dijkstra, 1976]
syntactically, i.e. simultaneously substituting all variables Var j in Bj according to as-
signment Ej , we obtain the structurally simpler but equivalent constraint

R#
c := ∃Var0 g [Var/Var0] ∧ B0 ∧

k∧
j=1

Bj [Var j/Ej] [Var/Var0] .

49

3. Symbolical Model Checking with Menu-games

Note that R#
c is a LIA formula, since assignments Ej are assumed to use linear arith-

metic only (see Definition 2.24). Analogous to JcK, the computation of JcK# amounts to

finding all solutions of R#
c , where blocks take the place of states:

JcK =

s0, a, k⊕

j=1

pi : (ua,i, Bj)

∣∣∣∣∣∣(B0, . . . , Bk) |= R#
c

 .

Example 3.7. Let us come back to our running example command cb

[b] phase = 1 & run > 0→ 0.97 : (run ′ = run − 1) + 0.03 : (phase ′ = 3)

from Listing 2.1. For illustration, we use the set of predicates from Example 3.2

P = {phase = 0︸ ︷︷ ︸
p1

, phase = 1︸ ︷︷ ︸
p2

, phase = 2︸ ︷︷ ︸
p3

, phase = 3︸ ︷︷ ︸
p4

},

and construct R#
cb :

R#
cb

= ∃phase0,run0∈N(phase0 = 1 ∧ run0 > 0)

∧
(
b01 ⇔ phase0 = 0

)
∧
(
b02 ⇔ phase0 = 1

)
∧
(
b03 ⇔ phase0 = 2

)
∧
(
b04 ⇔ phase0 = 3

)
∧

(
b11 ⇔ phase0 = 0

)
∧
(
b12 ⇔ phase0 = 1

)
∧
(
b13 ⇔ phase0 = 2

)
∧
(
b14 ⇔ phase0 = 3

)
∧

(
b21 ⇔ 3 = 0

)
∧
(
b22 ⇔ 3 = 1

)
∧
(
b23 ⇔ 3 = 2

)
∧
(
b24 ⇔ 3 = 3

)
At first glance, the abstract transition constraint may seem wrong, because the second

and third lines hardly differ and clearly b0i ⇔ b1i , 1 ≤ i ≤ 4. This, however, is correct
and attributed to the fact that the assignment run′ = run− 1 does not modify any of
the predicates in P, as those only refer to the variable phase. For the given constraint
it is easy to see that there is only one solution(

b01, b
0
2, b

0
3, b

0
4

)
=
(
b11, b

1
2, b

1
3, b

1
4

)
= (0, 1, 0, 0) ,

(
b21, b

2
2, b

2
3, b

2
4

)
= (0, 0, 0, 1) ,

such that JcbK# = {(B0,1,0,0, b, 0.97 : (ub,1, B0,1,0,0)⊕ 0.03 : (ub,2, B0,0,0,1))}, i.e. action b
is enabled in block B0,1,0,0 and choosing it leads to either B0,1,0,0 with probability 0.97
or to B0,0,0,1 in 3% of the cases.

We have seen this very semantics in the Menu-game from Figure 3.1, where B0,1,0,0 was
named B1 and B0,0,0,1 was known as B2. The distribution µ1 in that figure corresponds
to the one we just determined by solving the abstract transition constraint.

3.3.3. Logical Characterisation of Menu-games

In the following we adapt Definition 3.1 with respect to the logical characterisation of
commands, extending the description of [Wachter, 2011] with the “tedious corner case”
of blocks subsuming deadlock states.

50

3.3. Construction of Menu-games from Probabilistic Programs

Definition 3.8 (Symbolic Abstraction). Let P be a probabilistic program with the
initial state expression init , JP K = (S,Act , U,P, sinit) its semantics and Q a partition
of S, induced by a set of predicates P. The Menu-game

ĜJP K,Q = ((V,E), (V1, V2, Vp), U, vinit) ,

can be obtained from P with

• V1 := Q]
{
v⊥1
}

,

• V2 :=
⋃
c∈Cmd

{
(v1, a) ∈ V1 ×Act

∣∣∣ (v1, a, µ) ∈ JcK#
}
]
{
v⊥2
}
]
{
vdl
2,v1

∣∣ v1 ∈ Vdl

}
,

• Vp :=
⋃
c∈Cmd

{
µ ∈ Vp

∣∣∣ (v1, a, µ) ∈ JcK#
}
]
{
v⊥p
}
]
{
vdl
p,v1

∣∣ v1 ∈ Vdl

}
, with vdl

p,v1 :=

1.0 : (uτ , v1) and v⊥p := 1.0 : (uτ , v
⊥
1),

• vinit ∈ α (JinitK),

where Vdl := Q\α
(q∨

c∈Cmd gc
y)

is the set of blocks which contain a deadlock state, i.e.
a state not satisfying any guard, and, without loss of generality, init specifies exactly
one block, i.e. |α (JinitK)| = 1. The edges are given by

E :=
⋃

c∈Cmd

{(v1, v2) ∈ V1 × V2 | v1 ∈ α(JgcK), v2 = (v1, ac)}

∪
⋃

c∈Cmd

{
(v2, vp) ∈ V2 × Vp | v2 = (v1, ac), (v1, ac, vp) ∈ JcK#

}
∪

⋃
c∈Cmd

{
(v2, v

⊥
p) ∈ V2 × Vp | v2 = (v1, ac), v1 ∈ Q \ α (JgcK)

}
∪

{
(v⊥1 , v

⊥
2), (v⊥2 , v

⊥
p)
}

∪
{

(v1, v
dl
2,v1), (vdl

2,v1 , v
dl
p,v1)

∣∣∣ v1 ∈ Vdl

}
∪

{
(vp, v

′) ∈ Vp × V1 | v̂p(v′) > 0
}
.

This definition makes it easy to realise the independence of commands in the abstraction
since all the parts related to commands (except for deadlock states) are obtained by
unions over command-dependent sets. Later, in Section 5.1, we will see how we can get
rid of the exceptional handling of trap- and deadlock states.

3.3.4. Construction Algorithm

Let P = (Var ,VarType,Act ,Cmd , init) be a probabilistic program and P a set of pred-
icates. In the following, we describe the algorithms employed to obtain a Menu-game’s
MTBDD Dsys in terms of pseudocode and begin with a walk-though of constructing the
MTBDD Dc for a command c ∈ Cmd , see Algorithm 1.

51

3. Symbolical Model Checking with Menu-games

Essentially, the algorithm consists of two parts, separated by line 11. The first part
solves the abstract transition constraint, i.e. computes JcK#, and creates MTBDDs for
both the source blocks and the available distributions. Hereafter, we know how many
distributions are available at every block, i.e. the maximal number of options we have to
encode and thus can define encOpt . The second part combines the MTBDDs for source
blocks and distributions, where distributions are distinguished by options.

Algorithm 1 Command abstraction

1: procedure AbstractCommand(c) . Creates the MTBDD Dc

2: f ← {} . Maps Dsrc to set of Dµ

3: for all (Bsrc , ac, µ) ∈ JcK# do
4: Dsrc ← Setsrc(encv(Bsrc))
5: Dµ = 0D
6: for all p : (u,Bdst) ∈ µ do . Represent µ as Dµ

7: Dµ ← Dµ + Setupd (encUpd (u)) · Setdst(encv(Bdst)) ·Const(p)
8: end for
9: f(Dsrc)← f(Dsrc) ∪ {Dµ}

10: end for
11:

12: Dc = 0D
13: for all

(
Dsrc ,

{
Dµ1 , . . . ,Dµm

})
∈ f do . Combine sources with distributions

14: Dc ← Dc+Dsrc ·
(
Dµ1 · Setopt(encOpt(o1)) + · · ·+ Dµk · Setopt(encOpt(om))

)
15: end for
16: return Dc · Setact(encAct(ac))
17: end procedure

Command abstraction begins with the creation of a mapping f from MTBDDs to
sets of MTBDDs, which we use to keep track of distributions available at each block.
JcK# is obtained from enumerating the solutions of the respective abstract transition

constraint R#
c with a Smt-solver. A single iteration of the loop starting in line 3 creates

the MTBDDs for the source block Bsrc and available distribution µ of (Bsrc , a, µ) ∈ R#
c .

While the creation of Dsrc is straightforward, the representation of the distribution
amounts to summing up intermediate MTBDDs for each update (ref. line 3).

Once the MTBDDs for blocks and distributions are created, we know the number
of options for every block Bsrc , if command c is taken. Similar to the construction
for distributions, we iteratively combine all source block MTBDDs with their available
distributions, where every distribution is identified with an option. Instead of adding
the command’s label in every iteration, we add it once in the very end.

Algorithm 2 illustrates how command abstraction fits into the big picture of menu-
based abstraction of P . The Menu-game is essentially given by the sum of the Dc for
all c ∈ Cmd . However, at that point, Dsys may still represent unreachable states, does
not represent transitions to the trap block, and may still have blocks which subsume
states not satisfying any command’s guard. All these issues can be taken care of in a

52

3.3. Construction of Menu-games from Probabilistic Programs

few post-processing operations, though.
The invocation of Reach returns a BDD over src representing the set of blocks

reachable from the initial block. Using this result, we can restrict Dsys to the reachable
blocks, and thereby reduce the number of blocks to consider in future analyses. Since
Reach is in fact optional, we first of all illustrate AddTrap and FixDeadlocks,
before coming back to it in Section 3.3.5.

Algorithm 2 Program abstraction

1: procedure AbstractProgram(P) . Creates the MTBDD Dsys

2: Dsys = 0D
3: for all c ∈ Cmd do . Combine abstract transitions
4: Dsys = Dsys + AbstractCommand(c)
5: end for
6: Dsys ← Dsys ·Reach(Dsys ,Dinit) . Restrict to reachable blocks
7: AddTrap(Dsys , P) . Add transitions to trap-loop where due
8: FixDeadlocks(Dsys) . Add self-loops to deadlock-subsuming blocks
9: return Dsys

10: end procedure

Adding Trap Block

So far, our Menu-game MTBDD Dsys does not represent transitions to the trap vertex.
Determining the player 2 vertices which should lead to the trap vertex is not a problem,
though, and can be performed for every command c independently.

To this end, we determine the set of blocks V1,¬gc = α (J¬gcK) which do not satisfy
the guard gc of a command c. If such a block has a player 2 successor vertex reachable
with action ac, then this vertex must have the option to reach v⊥p . Let DV1,¬gc be the
BDD over src representing the set V1,¬gc . We get the MTBDD representing the player
2 vertices occurring in Dsys and reachable from V1,¬gc with ac by

DV2,¬gc = DV1,¬gc · Setact(encAct(ac)) ·DV 01
2
,

where
DV 01

2
:= ExistsAbstract

((
opt , upd , dst

)
,Dsys 6= 0D

)
is the set of player 2 vertices existing in Dsys . All player 2 vertices (for all commands)
which should lead to the trap behaviour, are obtained through the sum

DV2,¬gCmd
:=

∑
c∈Cmd

DV2,¬gc .

The actual hurdle at that point is, that both Dsys and DV2,¬gCmd
use the option

variables opt = (o1, . . . , ol), which just suffice to distinguish between ordinary player 2
choices. We have to add another option variable to distinguish between ordinary choices
and the choices leading to the trap behaviour. The concept is visualised in Figure 3.3,

53

3. Symbolical Model Checking with Menu-games

where the right MTBDD, illustrated as a triangle, encodes the transitions to the bottom
states. Combining both MTBDDs like that yields a Dsys with transition to the trap
vertex.

ol+1

src

act

opt

upd

dst

Dsys

V2,¬gCmd

oτ

uτ

v⊥1

Figure 3.3.: Extending Dsys with trap-successors

Of course we still have to represent the trap-cycle v⊥1 v
⊥
2 v
⊥
p . We don’t go into detail

about that though, as it amounts to simply adding a single transition from v⊥1 to itself,
using the action aτ and option oτ .

Fixing Deadlocks

It remains to sketch the last step of Algorithm 2, where we add the possibility of
self-looping to those player 1 vertices which subsume deadlock states. According to
Definition 3.8, the respective player 1 vertices are given by Vdl . Let DVdl

be the BDD over
src representing this set and Did be the identity BDD over (src, dst), i.e. it represents
the function

fDid
[src = s, dst = d] =

{
1 if s = d

0 otherwise
.

The fixed MTBDD is then obtained by

Dsys = Dsys +DVdl
·Did ·Setact(encAct(aτ)) ·Setopt(encOpt(oτ)) ·Setupd (encUpd (uτ)),

where the latter summand encodes a self-loop with action aτ , option oτ and update uτ
for all vertices in Vdl .

3.3.5. Reachable State Space

It is not necessary but advisable to remove unreachable vertices from Dsys since such
states, by definition, do not contribute to probabilistic reachability. Accordingly, con-
sidering such vertices in the fixed point computation for probabilistic reachability only
slows down.

54

3.4. Solving Menu-games

Algorithm 3 illustrates the inner workings of the Reach-method, which takes a sys-
tem’s MTBDD Dsys and a BDD Dinit representing a set of initial vertices – a single
vertex in our case. The general idea is to keep track of a the set of vertices, known as
frontier, found in the latest iteration, and only add new successors of the frontier to the
set of reachable states.

Algorithm 3 Determining reachable state space

1: procedure Reach(Dsys ,Dinit) . Creates the MTBDD Dreach

2: DSrcDst = ExistsAbstract
((

act , opt , upd
)
,Dsys 6= 0D

)
3: Dreach = Dinit

4: Dfrontier = Dinit

5: while Dfrontier 6= 0D do . Until no new vertices exist
6: Dsucc = ExistsAbstract (src,Dfrontier ·DSrcDst)
7: Dfrontier = ReplaceVar (src, dst ,Dsucc) · ¬Dreach

8: Dreach = Dreach + Dfrontier

9: end while
10: return Dreach

11: end procedure

At the beginning, we construct an MTBDD DSrcDst which represents the player 1
vertex successor relation, i.e. fDSrcDst

[src = encv(Bsrc), dst = encv(Bdst)] = 1 if there is
an action, option and update to reach Bdst from Bsrc . We start with the knowledge of
the initial vertices being reachable, i.e. Dreach = Dfrontier = Dinit .

In the loop, we determine the successors of vertices of the current frontier by multi-
plying the frontier with the successor relation and abstracting from the variables in src.
As a result the successors are represented by Dsucc over the variables dst . Subsequently
we set the frontier to the set of new successors, where, by multiplying with ¬Dreach ,
we ensure that the frontier contains only unexpanded vertices. Note that we replace
the source variables by destination variables since the frontier is supposed to be defined
over src. Finally, we add the frontier to the set of reached vertices and continue looping
until no vertices remain unexpanded.

3.4. Solving Menu-games

In the previous section we have seen how to obtain an MTBDD Dsys representing a
Menu-game. This section focuses on how we can perform the fixed point iterations on
this symbolical representation.

3.4.1. Symbolical Value Iteration

In Section 3.1.2, we have seen that probabilistic reachability for Menu-games, amounts
to computing the respective fixed points for stochastic games, see Section 2.1.8. Thus,

55

3. Symbolical Model Checking with Menu-games

to compute probabilistic reachability, we have to express the fixed point iterations in
terms of operations on the system’s MTBDD Dsys .

Algorithm 4 Value Iteration

1: procedure ValIter(Dsys , p1 max , p2 max ,DG)
2: Du

sys ← Abstract
(
+, upd ,Dsys

)
. Unlabel distributions

3: D01
Opt ← ExistsAbstract

(
dst ,Du

sys 6= 0D
)

. Valid options

4: D01
Act ← ExistsAbstract

(
opt ,D01

Opt

)
. Valid actions

5: Dnew
res ← DG

6: repeat
7: Dold

res ← Dnew
res

8: Dnew
res ← ValIterStep

(
Du

sys , p1 max , p2 max ,Dold
res ,D

01
Act ,D

01
Opt

)
9: Dnew

res ← ITE (DG, 1D,D
new
res) . Goal always reaches itself

10: until fDold
res
≈δ fDnew

res
. Until fixed point reached

11: return Dnew
res

12: end procedure

Algorithm 4 illustrates such a symbolical procedure to compute the fixed point, where
the Boolean parameters p1 max and p2 max indicate which players aim to maximise the
reachability and the BDD DG represents the goal set over dst .

Knowing that unlabelled distributions suffice for our analysis, we begin by abstracting
from the distributions’ updates to obtain a smaller MTBDD Du

sys . This is semantically
equivalent to summing up over the updates, as we have seen in Section 2.1.1. In addition,
we construct the auxiliary BDDs D01

Opt and D01
Act , which indicate the options and actions

that actually exist in Du
sys . This information is necessary for ValIterStep, to avoid

considering invalid encodings when minimising or maximising over options or actions.

We begin the actual value iteration with the MTBDD Dnew
res over dst , representing the

valuation mapping all goal vertices to 1. Setting Dnew
res ← 0D will work too, but be equal

to DG after one iteration. Bear in mind that v⊥1 must be part of G when computing
minimal probabilistic reachability. The invocation of ValIterStep corresponds to a
single application of the respective transformer pre±,±G on the current valuation, given
by Dold

res . The resulting valuation Dnew
res is then adapted to ensure that goal vertices

always have the reachability probability 1. Note that this modification is necessary to
meet the definition, since otherwise, goal states without self-loops will have degraded
reachability – adding self-loops is an alternative, too. The loop terminates once the
reachability probabilities of the player 1 vertices do not change significantly. Due to the
numerical nature of this approach, exact equality will not be reached in a finite number
of iterations for many models. Therefore, in practice, some equality metric with respect
to a difference δ must be employed.

56

3.4. Solving Menu-games

3.4.2. Symbolical Valuation Transformer Application

The core part of value iteration is the application of a transformer pre±,±G on the cur-
rent valuation. Algorithm 5 describes a procedure which handles this. The innermost
expression of a value transformer for stochastic games is always the computation of a
weighted sum

∑
v′∈E(vp)

v̂p(v
′) · w(v′) – a matrix-vector-multiplication if you will. The

respective MTBDD DMV , representing a mapping of options to probabilities, is ob-
tained from summation over the destinations of Du

sys · Dold
res , which corresponds to the

inner multiplication v̂p(v
′) · w(v′). Afterwards, conforming to the structure of pre±,±G ,

the two phases of non-determinism resolving follow.

Algorithm 5 Value Iteration Step

1: procedure ValIterStep(Du
sys , p1 max , p2 max ,Dold

res ,D
01
Act ,D

01
Opt)

2: DMV = Abstract
(
+, dst ,Du

sys ·Dold
res

)
.
∑

v′∈E(vp)
v̂p(v

′) · w(v′)
3:

4: if p2 max then . Min-/Maximise over options

5: Dnew
res ← ITE

(
¬D01

Opt ,−1D,DMV

)
6: Dnew

res ←MaxAbstract
(
opt ,Dnew

res

)
7: else
8: Dnew

res ← ITE
(
¬D01

Opt , 2D,DMV

)
9: Dnew

res ←MinAbstract
(
opt ,Dnew

res

)
10: end if
11:

12: if p1 max then . Min-/Maximise over actions
13: Dnew

res ← ITE
(
¬D01

Act ,−1D,D
new
res

)
14: Dnew

res ←MaxAbstract (act ,Dnew
res)

15: else
16: Dnew

res ← ITE
(
¬D01

Act , 2D,D
new
res

)
17: Dnew

res ←MinAbstract (act ,Dnew
res)

18: end if
19: return ReplaceVar (src, dst ,Dnew

res) . Returns Dnew
res over dst

20: end procedure

Player 2 chooses prior to player 1. Let us first consider the case that player 2 aims
to maximise the reachability probability, i.e. we are computing the upper bound for
minimal or maximal reachability. At first glance, it may seem to suffice to apply
MaxAbstract over the options, to choose the maximising one. This, however, is
not the case. In DMV , both the invalid options and the valid options which result in
the reachability probability 0, are mapped to 0. Thus prior to maximising, we have to
ensure that no invalid option can be taken by mapping all invalid options to −1. Since
every player 2 vertex has at least one option, it is guaranteed that −1 will not appear
anymore after MaxAbstract. Dually, when minimising, the invalid options must be

57

3. Symbolical Model Checking with Menu-games

mapped to a value greater than 1, in our case 2, to ensure that invalid options cannot
be chosen as long as valid alternatives exist. The subsequent MinAbstract ensures
that the minimal valid option is chosen and no valuation yielding 2 occurs afterwards.

Analogously, the second half of the algorithm implements the choice of player 1,
but operates on the result Dnew

res of the first choice. Lastly, the result’s variables src
are replaced by dst , to be comparable to the result of the previous iteration, which is
encoded over dst , too.

Example 3.9. Let Dsys be the Menu-game from Figure 3.2 and assume we are interested
in finding the upper bound for maximal probabilistic reachability of B1. In the following,
we illustrate the first iteration step on the game’s MTBDD.

0.7 0.31.0

src⊥

srcp1

act1

act0

opt0

dst⊥

dstp1

(a) MTBDD Du
sys

0.3 1.00.0

src⊥

srcp1

act1

act0

opt0

(b) MTBDD DMV

Figure 3.4.: Unlabeling distributions and matrix-vector-multiplication

To begin with, we unlabel the system’s distributions, see Figure 3.4a. Since no two
updates of a player 2 vertex lead to the same destination, the result corresponds to
ExistsAbstract

(
upd ,Dsys

)
. Since we compute a bound for the maximal reachability

we do not have to add v⊥1 to goal, such that DG = Setdst (encv(B1)).

Figure 3.4b illustrates the MTBDD DMV , which represents the reachability probabil-
ity achievable by the different options, based on the current valuation Dold

res = DG. For
clarity, we also illustrated the valid paths in the MTBDD leading to zero. For example,
we see that going from B0 to the trap state v⊥1 (green path) is a valid option which will
result in the reachability probability 0. Furthermore, given the current valuation, the

58

3.5. Backward Refinement

option on the blue path seems to merely yield the reachability 0.3. This is due to the
fact that the current valuation maps B0 to 0.

Now that all action-option combinations for every player 1 vertex are mapped to
estimated reachability probabilities, we resolve the non-determinism corresponding to
the value transformer for the upper bound of maximal probabilistic reachability, i.e. by
maximising over both players’ choices.

0.3 1.00.0

src⊥

srcp1

act1

act0

(a) Dnew
res after player 2 choice

0.3 1.00.0

src⊥

srcp1

(b) Dnew
res after player 1 choice

Figure 3.5.: Both players maximising over their choices

The result of selecting the maximising options is illustrated in Figure 3.5a. While
there is actually not much of a choice, note that player 2 settles for option o1, for the
vertex (B0, a), instead of o2 since 0.3 > 0 (blue path). Subsequently player 1 picks the
maximising actions, which yields the valuation represented in Figure 3.5b. The first
iteration resulted in assigning the maximal reachability probability 0.3 to block B0.
This, however, is not the fixed point and follow up iterations will show that the value
in fact converges to 1.

3.5. Backward Refinement

In the previous sections, we have seen how a to construct a symbolic representation of
Menu-games and perform value iteration on this structure. However, we have also seen
that the bounds may turn out too coarse to be useful, e.g. Prmax (♦G) ∈ [0, 1] does not
give any new information. In Example 2.39 we already illustrated that this is due to
our partition Q being too coarse. Since Q is induced from a set of predicates P, this
implies that the predicates do not suffice to distinguish between states which influence
the reachability of the goal set. Consider our running example program Psimple from
Listing 2.1. Using a predicate set which did not reference the predicate run > 0, states
which have the actions b or c enabled could not be distinguished – see Example 3.2.

Therefore, this section introduces the backward refinement procedure, proposed by

59

3. Symbolical Model Checking with Menu-games

[Wachter, 2011], which analyses a Menu-game, constructed with respect to a set of pred-
icates P, to derive additional predicates which will eventually improve the precision. In
contrast to Wachter, we illustrate a fully symbolic approach to this procedure, avoiding
any explicit representation.

3.5.1. Pivot Blocks

Let Ĝ be a Menu-game and G# the set of goal vertices. Employing value iteration
will leave us with the lower and upper bound valuations wl and wu for the probabilistic
reachability of interest. Now, if wu(vinit) and wl(vinit) differ, there must be blocks in the
system consisting of states which influence the reachability of G# in two different ways,
e.g. one subsumed state may never reach a goal state, while another may always do
so. [Wachter, 2011] coined the term pivot blocks to denote such refinement candidates
where precision is lost.

At first glance, it might seem a good idea to consider all blocks where the upper
and lower bounds differ as pivot blocks. This is a bad idea though. For example,
consider the Menu-game of our program Psimple , illustrated in Figure 3.1. We have seen
that the bounds for maximal probabilistic reachability of B2 are [0, 1] for the initial
state. However, refining block B0 (if it weren’t already a s single-state block) would not
improve the bounds since the actual cause for the deviation lies in its successor block
B1, whose bounds propagate to B0. If we were to split B1 in such a way that states
which enable different actions do not fall together anymore, there would be no reachable
trap state and, as a result, the lower bound would improve.

In fact, a good indicator for a state not being a pivot state is that both the lower
and upper bounds strategies for this block do not differ – this is true for B0. If the way
non-determinism is resolved influences the reachability, then the strategies for lower and
upper bound must differ. Thus, a better criterion to identify pivot blocks is to consider
states where the strategies for both lower and upper bound differ.

However, different strategies for a block do not imply different bounds, e.g. both
strategies may lead to different goal blocks with probability 1. To avoid such spurious
differences between strategies, we will have to ensure that strategies only differ, if the
resulting bounds differ, too. Assuming we can avoid spurious differences, different
strategies in a block will imply different bounds and qualify the blocks as pivot block.

Definition 3.10 (Pivot Block [Wachter, 2011]). Let
(
σl1, σ

l
2

)
and (σu1 , σ

u
2) be the strat-

egy pairs yielding the lower and upper bound valuations in a Menu-game. A reachable
block B is a pivot block, if the (composed) strategies differ, i.e.

σl2(σ
l
1(v)) 6= σu2 (σu1 (v)).

Note that the existence of a pivot block is guaranteed if the bounds for probabilistic
reachability differ (in the initial block), because if there were no pivot block, i.e. the
lower and upper strategies of block would be equal, the bounds would be equal, too.

60

3.5. Backward Refinement

3.5.2. Deriving Refinement Predicates

Let v1 be a pivot block. The emerging question is which new predicates to introduce to
avoid the current cause of losing precision, i.e. to split the block v1 in such a way that
the states causing the currently regarded uncertainty are separated.

In Menu-games, uncertainty is introduced by the player 2 non-determinism, which
distinguishes behaviours of the states subsumed by a block. Thus in a pivot block v1
for at least one of the player 2 vertices vl2 := σl1(v1) or vu2 := σu1 (v1) different options
must have been chosen.

If an action does not contribute to the uncertainty, i.e. σl2(v2) = σu2 (v2), v2 ∈
{
vl2, v

u
2

}
,

clearly no splitting is necessary. However, if the player 2 strategies differ, then the re-
spectively reached distributions differ too. Consequently, a predicate must be introduced
which allows to distinguish between both options, i.e. rebuilding the Menu-game with
respect to the extended predicate set should group these behaviours in different blocks.

We distinguish between two kinds of reachable distributions – the trap-distribution
leading to the trap block and the remaining ordinary distributions. In the previous
section, we have seen that if a player 2 vertex has the option of reaching the trap
behaviour, this is due to the predicate set not sufficing to distinguish between states
which have different sets of actions enabled. Clearly, in such a case the guard of the
respective action must be introduced as predicate.

In the other case, the upper and lower bound strategies in vl2 or vu2 lead to ordinary
distributions over blocks only. Note that since since the distributions of such an player 2
vertex are induced by the same command (action), the weights of the distributions must
be the same. As a result, they can only differ in their successors. Bear in mind that
using a form of predicate abstraction, we distinguish blocks by the sets of predicates
the satisfy. Considering this, we must introduce a predicate which splits the behaviours
corresponding to these options into different blocks, i.e. a predicate which distinguishes
the effects of the corresponding updates. In fact, in Definition 3.6 we have already used
a construct guaranteeing that an expression e holds after an assignment E – the weakest
precondition WPE(e) := e [Var/E(Var)].

Overall, we derive refinement predicates for a pivot block vpivot as follows

DerivePred(vpivot) := DerivePred(σl1(vpivot)) ∪DerivePred(σu1 (vpivot)),

where for a player 2 vertex v2

DerivePred(v2) :=

∅ if σl2(v2) = σu2 (v2)

{gc} if σl2(v2) = v⊥p or σu2 (v2) = v⊥p

{WPEi(p)} if σl2(v2)(ua,i, v
′
1) = σu2 (v2)(ua,i, v

′′
1) > 0 and JpKv′1 6= JpKv′′1

,

with c being the command corresponding to the action ac chosen by the player 1 strategy,
and v′1, v

′′
1 being the blocks distinguishable by a predicate p [Wachter, 2011].

3.5.3. Backward Refinement Procedure

Taken as a whole, the backward refinement procedure amounts to computing a Menu-
game, obtaining valuations wl and wu for the lower and upper bound of the respective

61

3. Symbolical Model Checking with Menu-games

reachability property and repeating the process with respect to predicates derived from
pivot blocks if the bounds turn out being too coarse. Figure 3.6 illustrates this scheme.

Determine ĜJP K,Q
Q induced by P

Program P , Predicates P = {ϕgoal , ϕinit}

Compute lower wl(vinit) and
upper bound wu(vinit)

Determine pivot
blocks

Pick a block

Derive refinement
predicates P ′

if wu(vinit)− wl(vinit) < ε

otherwise

P := P ∪ P ′

Figure 3.6.: General structure of the backward refinement procedure

[Wachter, 2011] proves that the given predicate derivation function does indeed refine
Q in such a way that the concrete states which caused the uncertainty for a pivot block,
end up in different blocks afterwards, thus trivially guaranteeing the termination of the
backward refinement procedure for finite-state programs.

Example 3.11. Let us walk through the process of computing the maximal probability
of the system Psimple (from Listing 2.1) breaking, i.e. Prmax (♦ Jphase = 3K). To this
end we employ the backward refinement procedure using the predicates

P = {phase = 0, phase = 1, phase = 2, phase = 3, run ≤ 0}

for the initial Menu-game. Note that the single goal predicate phase = 3 would have
sufficed too, but would have resulted in more refinement iterations. In contrast to
Example 3.2, we additionally use the predicate run ≤ 0 to avoid reaching a trap state.
Additionally, the initial state expression must often be added to the predicates, to
ensure that there exists only one initial block. However, for the given example this is
not needed, as the initial state expression is already satisfied by only one block.

Figure 3.7 illustrates the refinement process. The initial Menu-game with respect
to the given set of predicates is depicted in Figure 3.7a. For better readability, blocks
are only labeled with the predicates they satisfy and the variables phase and run are
abbreviated by p and r. The maximal reachability probability bounds, with respect to
the red tinted goal blocks, are annotated as intervals next to the blocks.

62

3.5. Backward Refinement

First Refinement Step

In contrast to Example 3.2, the lower bound for reaching a goal block is not zero
anymore. Nevertheless, the interval [0.0591, 1] is yet too imprecise to be meaningful.
Let us analyse where precision is lost. In the initial Menu-game, there is only one block
featuring player 2 non-determinism B = {p = 1,¬ (r ≤ 0)} – also indicated by thick
borders. Clearly, this block is a pivot block since the strategies yielding the lower and
upper bounds lead to different distributions, i.e. the left option is chosen for the lower
and the right one for the upper bound.

The non-determinism comes from the states s1 = {phase 7→ 1, run 7→ 2} and s3 =
{phase 7→ 1, run 7→ 1} being contained in the pivot block, and only s3 having a b-
successor to a state where r ≤ 0 holds. To derive the refinement predicate splitting
(at least) these states, we compute the weakest precondition of the distinguishing pred-
icate r ≤ 0 with respect to the update ub,1, which leads to different blocks:

WPE1(r ≤ 0) ≡ run− 1 ≤ 0 ≡ run ≤ 1,

where E1 = {run 7→ run − 1, phase 7→ phase} is the assignment corresponding to update
ub,1. We add this predicate to P and rebuild the Menu-game.

Second Refinement Step

Having split B = {p = 1,¬ (r ≤ 0)} into B1 = {p = 1,¬ (r ≤ 0) ,¬ (r ≤ 1)} and B2 =
{p = 1,¬ (r ≤ 0) , r ≤ 1}, we still do not get better bounds than [0.0591, 1]. This time B1

is the pivot state, where the update ub,1 leads both the minimising and the maximising
option to different blocks – distinguished by r ≤ 1. However, in contrast to the initial
Menu-game, the problem is that block B1 contains states for which run = 2 holds and
those where run is mapped to something greater. The respective predicate is derived
as follows:

WPE1(r ≤ 1) ≡ run− 1 ≤ 1 ≡ run ≤ 2.

Rebuilding the Menu-game another time, yields precise bounds [0.0591, 0.0591] for the
maximal probabilistic reachability of the system breaking.

The result may be somewhat disillusioning, considering that the number of blocks
turned out to be equal to that of the concrete state space we have seen in Example 3.2.
This level of refinement is usually not needed though. For example, we did in fact not
even use the initial state expression as a predicate, thereby building a Menu-game which
proves that the maximal probability of the system breaking is 0.0591 no matter what
the initial value of run is, i.e. we would have obtained the very same small Menu-game if
the initial state expression were just phase = 0, defining a system with infinitely many
initial states.

63

3. Symbolical Model Checking with Menu-games

p = 0
r ≤ 0

[0.0591, 1]

p = 1
¬ (r ≤ 0)

[0.0591, 1]

p = 3
¬ (r ≤ 0)

[1, 1]

p = 1
r ≤ 0

[0, 0]

p = 2
r ≤ 0

[0, 0]

a

1.0, ua,1

b0.97, ub,1

0.03, ub,2
0.0

3,
u b,2 0.97, ub, 1

aτ 1.0, uτ c

1.0, uc,1

aτ 1.0, uτ

(a) Initial Menu-game

p = 0
r ≤ 0
r ≤ 1

[0.0591, 1]

p = 1
¬ (r ≤ 0)
¬ (r ≤ 1)

[0.0591, 1]

p = 3
¬ (r ≤ 0)
¬ (r ≤ 1)

[1, 1]

p = 1
¬ (r ≤ 0)
r ≤ 1

[0.03, 0.03]

p = 3
¬ (r ≤ 0)
r ≤ 1

[1, 1]

p = 1
r ≤ 0
r ≤ 1

[0, 0]

p = 2
r ≤ 0
r ≤ 1

[0, 0]

a

1.0, ua,1

b

0.03, ub,2

0.97, ub,1

0.0
3,
u b,2 0.97, ub,1

aτ 1.0, uτ
b

0.03, ub,2 0.97, ub,1

aτ 1.0, uτ

c

1.0, uc,1

aτ 1.0, uτ

(b) Refined Menu-game

p = 0
r ≤ 0
r ≤ 1
r ≤ 2

[0.0591, 0.0591]

p = 1
¬ (r ≤ 0)
¬ (r ≤ 1)
r ≤ 2

[0.0591, 0.0591]

p = 3
¬ (r ≤ 0)
¬ (r ≤ 1)
r ≤ 2

[1, 1]

p = 1
¬ (r ≤ 0)
r ≤ 1
r ≤ 2

[0.03, 0.03]

p = 3
¬ (r ≤ 0)
r ≤ 1
r ≤ 2

[1, 1]

p = 1
r ≤ 0
r ≤ 1
r ≤ 2

[0, 0]

p = 2
r ≤ 0
r ≤ 1
r ≤ 2

[0, 0]

a

1.0, ua,1

b

0.03, ub,2 0.97, ub,1

aτ 1.0, uτ
b

0.03, ub,2 0.97, ub,1

aτ 1.0, uτ

c

1.0, uc,1

aτ 1.0, uτ

(c) Final Menu-game

Figure 3.7.: Backward refinement of the Menu-game of Psimple

3.5.4. Deriving Strategies Symbolically

In the previous section we have seen that to derive predicates we need the lower and
upper bound strategies for both players. In this section, we elaborate on how the
symbolical value iteration can be extended to also yield strategies.

64

3.5. Backward Refinement

Minimal and Maximal Representatives

In Section 3.4.2, we used the MaxAbstract (or MinAbstract) operation to max-
imise (or minimise) over actions and options. This time, we are not only interested
in the maximal and minimal values for a player’s vertex but also the choice itself, as
this corresponds to the notion of strategy. To this end, we introduce novel operations
MaxAbstractRepresentative and its minimising counterpart, which do not ab-
stract from variables but pick a unique representative which realises the maximal (or
minimal) value. Formally, for an MTBDD D over the variables (x, z), the operations
are defined as follows:

• MaxAbstractRepresentative(z,D) yields an BDD over (x, z) representing
the function

f(x, z) :=

{
1 if z = zmax (x)

0 otherwise
,

where zmax is the function choosing a maximal representative, i.e. fD(x, zmax (x)) :=
maxz fD(x, z).

• Dually, MinAbstractRepresentative(z,D) yields an BDD over (x, z) repre-
senting the function

f(x, z) :=

{
1 if z = zmin(x)

0 otherwise
,

where zmin is the function choosing a minimal representative, i.e. fD(x, zmin(x)) :=
minz fD(x, z).

Example 3.12. Figure 3.8 illustrates the usage of MaxAbstractRepresentative
on the MTBDD D, which we already used in Example 3.9. Again, we explicitly depict
paths to the 0 terminal node, which correspond to valid paths of the respective model.

To begin with, let us focus on choosing the maximal representative for the block
encoded by (src⊥, srcp1) = (0, 0). From Figure 3.8a it is easy to see that only two
actions (green and blue path) come into question being the representative. Since the
blue action realises the greater value we drop the green one, i.e. for this block only the
blue action is mapped to 1 in the resulting MTBDD.

Furthermore, it is easy to see that the states encoded by (src⊥, srcp1) = (1, 0) and
(src⊥, srcp1) = (0, 1) have only one valid action to choose from (black and red path).
Accordingly these paths are kept unchanged by the representative picking.

It might be surprising though, that the resulting MTBDD has four paths to the 1-
terminal node, i.e. the valuation (1, 1, 1, 0) does not correspond to any valid path in
D. This is due to the fact, that representatives are chosen for all paths – even those
that are invalid with respect to the model. In fact, the MTBDD D maps all actions
of the block encoded by (src⊥, srcp1) = (1, 1) to zero, such that any action is a valid
representative and any extension of the valuation (1, 1) may occur in the result.

65

3. Symbolical Model Checking with Menu-games

Thus, when picking representatives of actions or options, we have to multiply the
result with D01

Act , respectively D01
Opt , to avoid considering invalid actions and options in

our computation.

0.3 1.00.0

src⊥

srcp1

act1

act0

(a) Action choices D

1.0

src⊥

srcp1

act1

act0

(b) Maximising player 1 strategy

Figure 3.8.: Illustration of MaxAbstractRepresentative

Updating Strategies

With the notion of minimal and maximal representatives, we can derive strategies in
every value iteration step. It remains to discuss what to do with the strategy of a
previous iteration, i.e. whether to completely replace the old strategy by the new one
or update separate parts of it.

Figure 3.9 illustrates why we cannot simply replace the old strategy when maximising.
Let a correspond to the player 1 strategy of the current value iteration step for block
B, yielding the upper bound probability 0.75. Then, in the next iteration, it seems like
both action a and b are valid maximising representatives, since choosing b always leads
to a state with the upper bound 0.75, too. This, however, is wrong since a strategy
choosing b would actually realise the reachability value 0, never leaving B.

As a result, if the new maximising strategy for a block or player 2 vertex does not
strictly improve the reachability probability, it should be discarded as it may build upon
values propagated by other actions, like a in our case.

. . . B . . .

[0, 0.75]

b1.0
a

Figure 3.9.: Case to consider when updating strategies

66

3.5. Backward Refinement

Adapted Value Iteration Procedure

Using these concepts, we can now extend the value iteration step, from Algorithm 5, with
the minimal and maximal representatives computation, to derive respective strategies.
Additionally, we have to make sure to not simply replace the previous strategies, but
update them correctly when maximising.

Algorithm 6 describes the extended procedure, which now consists of four parts and
takes the strategies of the previous step as additional parameters:

Computing player 2 strategies In the first place, similar to the original algorithm, we
compute the MTBDD DMV , representing the values the different options yield.
Subsequently, in lines 4 to 10, we determine the maximising (or minimising) op-
tions. In contrast to the original algorithm, we do not simply pick the optimal
values but the representative options. Note that, as illustrated in Example 3.12,
we multiply with the valid options D01

Opt to avoid storing strategies for invalid
blocks.

Updating player 2 strategies We know that when maximising, we may only update
the strategies of those player 2 vertices where the new strategy, given by the
representative options, realises strictly greater reachability values. To this end, in
lines 12 to 16, we compute the values the old and the new strategy realise for a
player 2 vertex. The combined strategy is then given by the new strategy for the
player 2 vertices which realise strictly greater values using the new strategy, and
the old strategy for the remaining player 2 vertices.

Computing player 1 strategies Analogous to the computation of the player 2 strategy,
the new player 1 strategy is given by the corresponding valid representatives.

Updating player 1 strategies When maximising, the combination of the old and new
player 1 strategy is obtained similar to its player 2 counterpart. We compute for
which blocks the new strategies yield improved results and replace the old strategy
decisions for them by the new ones.

Finally, not only the reachability probability values are returned but also the updated
strategies for both players.

67

3. Symbolical Model Checking with Menu-games

Algorithm 6 Value Iteration Step Considering Strategies

1: procedure ValIterStep(Du
sys , p1 max , p2 max ,Dold

res ,D
01
Act ,D

old
σ1 ,D

old
σ2 ,D

01
Opt)

2: DMV = Abstract
(
+, dst ,Du

sys ·Dold
res

)
.
∑

v′∈E(vp)
v̂p(v

′) · w(v′)
3:

4: if p2 max then . Min-/Maximise over options

5: Dnew
res ← ITE

(
¬D01

Opt ,−1D,DMV

)
6: Dnew

σ2 ←MaxAbstractRepresentative
(
opt ,Dnew

res

)
·D01

Opt

7: else
8: Dnew

res ← ITE
(
¬D01

Opt , 2D,DMV

)
9: Dnew

σ2 ←MinAbstractRepresentative
(
opt ,Dnew

res

)
·D01

Opt

10: end if
11:

12: if p2 max ∧ fDold
σ2
6= 0 then . Update improvements when maximising

13: Dold
p2res = MaxAbstract

(
opt ,Dold

σ2 ·DMV

)
14: Dnew

p2res = MaxAbstract
(
opt ,Dnew

σ2 ·DMV

)
15: Dnew

σ2 = ITE
(
Dnew

p2 res > Dold
p2 res ,D

new
p2 res ,D

old
p2 res

)
16: end if
17: Dnew

res = MaxAbstract
(
opt ,Dnew

σ2 ·D
new
res

)
18:

19: if p1 max then . Min-/Maximise over actions
20: Dnew

res ← ITE
(
¬D01

Act ,−1D,D
new
res

)
21: Dnew

σ1 ←MaxAbstractRepresentative (act ,Dnew
res) ·D01

Act

22: else
23: Dnew

res ← ITE
(
¬D01

Act , 2D,D
new
res

)
24: Dnew

σ1 ←MinAbstractRepresentative (act ,Dnew
res) ·D01

Act

25: end if
26:

27: if p1 max ∧ fDold
σ1
6= 0 then . Update improvements when maximising

28: Dold
p1res = MaxAbstract

(
act ,Dold

σ1 ·D
new
res

)
29: Dnew

p1res = MaxAbstract
(
act ,Dnew

σ1 ·D
new
res

)
30: Dnew

σ1 = ITE
(
Dnew

p1 res > Dold
p1 res ,D

new
p1 res ,D

old
p1 res

)
31: end if
32: Dnew

res = MaxAbstract
(
act ,Dnew

σ1 ·D
new
res

)
33:

34: return
(
ReplaceVar (src, dst ,Dnew

res) ,Dnew
σ1 ,Dnew

σ2

)
. Returns Dnew

res over dst
35: end procedure

To ensure that the lower and upper bound strategies do not differ, as assumed in
Section 3.5.1, we always have to compute the lower bound first and then start the
upper bound computation with the results of the lower bound.

68

3.5. Backward Refinement

3.5.5. Computing Pivot Blocks Symbolically

In Section 3.5.2, we have seen that besides the reachability probabilities we also need
the respective strategies for both players. Using the procedure from the previous section
we do now have all the necessary parts to compute the set of pivot blocks.

We know that a player 1 vertex v is a pivot block if the (composed) lower and upper
bound strategies differ, i.e. σl2(σ

l
1(v)) 6= σu2 (σu1 (v)) (see Definition 3.10). Using the

strategy MTBDDs Dσl1
,Dσl2

,Dσu1
and Dσu2

, obtained through value iteration for both
the lower and upper bound, we can compute the MTBDDs representing the distributions
reached in both cases for all blocks. The lower distributions for all blocks are obtained
by combining both players’ lower strategies and multiplying them with the system’s
MTBDD Du

sys :

Dv l
p

= MaxAbstract
((

act , opt
)
,Du

sys ·Dσl1
·Dσl2

)
,

where the abstraction is only employed to get rid of the action and option variables, since
for each block there exactly only one non-zero action-option pair anyways. Analogously,
the upper bound distributions the different blocks reach are given by:

Dvu
p

= MaxAbstract
((

act , opt
)
,Du

sys ·Dσu1
·Dσu2

)
.

Now, finding the blocks where the lower and upper bound distributions differ amounts
to computing Dv l

p
6= Dvu

p
and abstracting from the destinations afterwards:

Dpivot = ExistsAbstract
(

dst ,Dv l
p
6= Dvu

p

)
.

69

3. Symbolical Model Checking with Menu-games

70

4. Optimisation Opportunities

In the previous chapter we have seen procedures which make symbolical backward refine-
ment amenable. Although functional, in a naive implementation, both the construction
of a Menu-game and the symbolical value iteration scale rather bad, such that analyses
take minutes, even for small numbers of predicates (< 20). This chapter elaborates
on optimisation opportunities in both the Menu-game construction and value iteration,
which overall significantly improve the feasibility of the approach. In the following, we
often refer to the source-variables instance Var0 as Var when the context is clear.

4.1. Optimising Abstraction

This section focuses on optimisation of the Menu-game construction. We point out
things to consider when using a Smt-solver to enumerate transition constraint solutions,
elaborate on how previous computations can be reused and state where unnecessary
computation can be avoided.

4.1.1. Asserting Variable Ranges

We introduced the abstract transition constraint, see Definition 3.6, as the logical char-
acterisation of a command, such that its solutions correspond to source and destina-
tion blocks of the abstract model. However, in the current state, the resulting over-
approximation is coarser than necessary. For example consider the command c

[a] x 6= 1→ 1.0 : (x′ = x+ 1),

where x ∈ {0, 1, 2} is a bounded integer and the set of predicates is given by P =
{x is odd}. The respective abstract transition constraint

R#
c = ∃x0∈N(x0 6= 1) ∧

(
b01 ⇔ x0 is odd

)
∧
(
b11 ⇔ x0 + 1 is odd

)
,

has two solutions
(
b01 = 0, b11 = 1

)
and

(
b01 = 1, b11 = 0

)
. However, knowing that the

domain of x is {0, 1, 2}, the solution
(
b01 = 1, b11 = 0

)
is clearly an over-approximating

one, since the guard is only satisfied by the even values 0 and 2 for x0. Adding the
constraints 0 ≤ x and x ≤ 2 corresponding to the variable’s domain would have sufficed
to eradicate that solution.

It is generally a good idea to add constraints describing a variable’s domain to reduce
the number of solutions and accordingly the number of MTBDDs to create. Using the
notation from Section 2.1.7, the additional constraints are given by∧

v∈Var

(min(dom(v)) ≤ v ∧ v ≤ max(dom(v))) [Var/Var0] .

71

4. Optimisation Opportunities

4.1.2. Exploiting Incrementality

Modern Smt-solvers support incremental solving. This means that the solver maintains
a stack of clauses instead of a flat representation and stores auxiliary clauses, which it
derives during solving, in relation to the clauses they are derived from. The advantage
of this becomes clear, when several similar formulas must be solved.

Assume we have a Boolean LIA formula ϕ1, which we push on the solver’s stack and
let it enumerate all solutions. If, at some later point, we want to check a formula ϕ1∧ϕ2

we only have to push ϕ2 on the stack. Since the solver most likely derived auxiliary
clauses when checking ϕ1, the solving of ϕ1∧ϕ2 will be significantly faster than it would
have been if the stack was empty and the checking would have started from scratch.
Furthermore, the incrementality allows popping of the clauses from the stack, such that
only the auxiliary clauses related to the popped clauses are deleted, e.g. checking ϕ1∧ϕ3

won’t have to start from scratch if we simply pop ϕ2 and push ϕ3.
The emerging question is how to exploit the incrementality of Smt-solving in our use

case. Using a single Smt-instance (a single stack) for all abstract transition constraints
is clearly not desirable as no auxiliary clauses would be retained, due to the pushing and
popping of whole transition constraints. For the same reason, creating a new instance,
every time we want to check a formula, is a bad idea.

We settled for creating one Smt-instance for each command or abstract transition
constraint, respectively, as this allows the solver to derive command-specific constraints.
Most importantly, the stack increases monotonically with every refinement iteration
such that previously derived auxiliary clauses can often be reused. For example, when
a refinement step derives a new predicate pn+1, we only have to extend the abstract
transition constraint for a command c in the following way:

gc
∧

(
b01 ⇔ p1

)
∧ . . . ∧

(
b0n ⇔ pn

)
∧

(
b0n+1 ⇔ pn+1

)
∧

(
b11 ⇔WPE1(p1)

)
∧ . . . ∧

(
b1n ⇔WPE1(pn)

)
∧

(
b1n+1 ⇔WPE1(pn+1)

)
...

...
...

...
...

...
...

...

∧
(
bk1 ⇔WPEk(p1)

)
∧ . . . ∧

(
bkn ⇔WPEk(pn)

)
∧
(
bkn+1 ⇔WPEk(pn+1)

)
︸ ︷︷ ︸

new clauses

,

where deg(c) = k and Ei corresponds to the i-th assignment. It is easy to see that this
amounts to merely pushing the new clauses{

b0n+1 ⇔ pn+1

}
∪
{
bjn+1 ⇔WPEj (pn+1)

∣∣∣ j ∈ {1, . . . , k}}
on the solver’s stack.

4.1.3. Relevant Predicates Optimisation

So far, when solving the abstract transition constraint, we have considered that the
predicates holding in a block are unrelated to those holding its successor blocks, i.e.

72

4.1. Optimising Abstraction

in the abstract transition constraint we have always added all clauses b0i ⇔ pi and

bji ⇔ WPEj (pi). This, however, is unnecessary since commands are often only related
to a subset of all predicates. As a result, not all clauses of the abstract transition
constraint have to be considered, since those corresponding to irrelevant predicates will
always stay unchanged and respective bji are therefore known beforehand. This allows us
to compute several “similar” transitions from a single solution of the adapted transition
constraint.

Concept

To get a better idea of which predicates have to be considered in the abstract transition
constraint, we consider several base cases of commands.

Case 1 Let us first consider the command true → 1.0 : (x′ = 1) with respect to the
predicates

P = {x ≥ 0︸ ︷︷ ︸
p1

, x = y︸ ︷︷ ︸
p2

, y ≥ 0︸ ︷︷ ︸
p3

}.

Since the assignment only modifies the value of x, it does clearly not affect the validity
of the predicate y ≥ 0, as this one does not refer to x. Accordingly, y ≥ 0 will hold in
a successor if and only if it did so in the source block. Respectively, we refer to the set
{x ≥ 0, x = y} as the relevant destination predicates. Dually, the set of relevant source
predicates is empty, since the value assigned to x does not depend on the predicates
that are true in the source block.

Bear in mind that generally the relevant source predicates must also contain all the
predicates (indirectly) related to the assignment variable. This is rather difficult to see
and thus deferred to the last case.

Figure 4.1 illustrates a solution of the abstract transition constraint, which discards
the source block clauses b0i ⇔ pi and only considers the destination block clauses b11 ⇔
3 ≥ 0 and b12 ⇔ 3 = y. The irrelevant destination predicates stay unchanged and can
safely be multiplied with the solutions of such a reduced transition constraint.

true

x ≥ 0
¬ (x = y)

×
{

y ≥ 0
¬ (y ≥ 0)

}
=

y ≥ 0

x ≥ 0
¬ (x = y)
y ≥ 0

¬ (y ≥ 0)

x ≥ 0
¬ (x = y)
¬ (y ≥ 0)

Figure 4.1.: Extending a solution with irrelevant destination predicates

To distinguish from actual blocks, we depicted the solutions with dashed lines. The
difference to conventional blocks is that the dashed ones correspond to sets of blocks,

73

4. Optimisation Opportunities

where the validity of the “missing” predicates may take any value. For example, the
rightmost solution represents, among others, a possible transition from the source block
{¬ (x ≥ 0) , x = y,¬ (y ≥ 0)} to the destination block {x ≥ 0,¬ (x = y) ,¬ (y ≥ 0)}. Tech-
nically, the dashed blocks correspond to what is encoded in the MTBDD representing
the solution.

Case 2 Let us now focus on the slightly modified command true → 1.0 : (x′ = y − 1)
but keep the predicates. Since the assignment still only affects the variable x the set
of relevant destination predicates is the same as before: {x ≥ 0, x = y}. However, this
time the value assigned to x depends on y. As a result, the validity of source block
predicates containing y influences the (in)validity of the relevant destination predicates
and thus must be considered. Accordingly, the relevant source predicates are given by
{x = y, y ≥ 0}.

Figure 4.2 illustrates a solution of the abstract transition constraint, which considers
the source block clauses

{
b02 ⇔ x = y, b03 ⇔ y ≥ 0

}
and the destination block clauses{

b11 ⇔ y − 1 ≥ 0, b12 ⇔ y − 1 = y
}

. As before, the irrelevant destination predicates stay
unchanged and are multiplied with the solutions of the reduced transition constraint.

x = y
y ≥ 0

x ≥ 0
¬ (x = y)

×
{

y ≥ 0
¬ (y ≥ 0)

}
=

x = y
y ≥ 0

x ≥ 0
¬ (x = y)
y ≥ 0

Figure 4.2.: Illustration of a more complex solution

Note that this may introduce invalid source blocks like B = {¬ (x ≥ 0) , x = y, y ≥ 0},
corresponding to unsatisfiable combinations of predicates. However, as long as there is
no valid block leading to an invalid one, they are not reachable and thus discarded
eventually.

Case 3 We maintain the set of predicates, but in contrast to the previous cases
we focus on the guard. To this end, we extend the command from the first case:
y ≥ 0 → 1.0 : (x′ = 1). Assume we would not care for the guard and determine the
relevant predicates as in the previous cases, i.e. consider the destination block clauses{
b11 ⇔ y − 1 ≥ 0, b12 ⇔ y − 1 = y

}
but no source block clauses b0i ⇔ pi since the value

assigned to x is independent of other variables.
Figure 4.3 illustrates why this may introduce invalid successors for valid blocks. Con-

sider the source-destination pairs given by the rightmost solution. Clearly, one solution
corresponds to the valid source block {x ≥ 0,¬ (x = y) ,¬ (y ≥ 0)} having the invalid
successor {x ≥ 0, x = y,¬ (y ≥ 0)}. To avoid such results, predicates sharing a vari-
able with the guard must be considered as relevant source predicates. In our case, this

74

4.1. Optimising Abstraction

amounts to considering the predicates y ≥ 0 and x = y for source blocks, which removes
the rightmost (problematic) solution.

true

x ≥ 0
x = y

×
{

y ≥ 0
¬ (y ≥ 0)

}
=

y ≥ 0

x ≥ 0
x = y
y ≥ 0

¬ (y ≥ 0)

x ≥ 0
x = y
¬ (y ≥ 0)

Figure 4.3.: A problematic transition constraint solution

Case 4 – Revising Case 1 There is a special case we have not considered yet, which
technically renders our previous examples not quite correct. In the following we illus-
trate why all predicates – even indirectly – related to the assignment variable must be
considered as relevant source predicates.

We come back to the command true → 1.0 : (x′ = 1) from the first case, but this time
we look at the predicate set P = {y + 1 = 2, y + x = 2, x = 1}. According to the previ-
ous cases we, naively, let the set of relevant distribution predicates be {y + x = 2, x = 1}
and leave the set of relevant source predicates empty.

Figure 4.4 illustrates how failing to consider predicates related to the assignment
variable may result in invalid successors.

true

¬ (y + x = 2)
x = 1

×
{

y + 1 = 2
¬ (y + 1 = 2)

}
=

y + 1 = 2

¬ (y + x = 2)
y + 1 = 2
x = 1

¬ (y + 1 = 2)

¬ (y + x = 2)
¬ (y + 1 = 2)

x = 1

Figure 4.4.: Why predicates related to the assignment variable must be considered

According to the left solution, the valid source block {y + 1 = 2,¬ (y + x = 2) ,¬ (x = 1)}
must have a successor {y + 1 = 2,¬ (y + x = 2) , x = 1}, which is clearly invalid as the
combination of its predicates is unsatisfiable. This result is attributed to the fact that
x is indirectly related to y and thus combinations of predicates containing x and y may
constrain the values assigned to x. As a result, we must consider all predicates (even
indirectly) related to the assignment variable as relevant source predicates.

Formalism

Our relevant predicates optimisation is inspired by the approach vaguely sketched in
[Wachter et al., 2007], which seems to use a single (coarser) set of relevant successor

75

4. Optimisation Opportunities

predicates and neglects to consider predicates related to the left-hand side of an assign-
ment as relevant source predicates.

Definition 4.1 (Relevant Predicates). Let c be a command

[a] g → p1 : Var ′ = E1 + · · ·+ pk : Var ′ = Ek,

and P = {p1, . . . , pn} a set of predicates. For an assignment Ej , we define the sets of
relevant source and destination predicates, respectively Psrc

Ej
and Pdst

Ej
, as follows:

Psrc
Ej

: Predicates which indicate the (in)validity of predicates in successor blocks, i.e.
predicates which share a variable with the right-hand side of Ej or the guard or
are (indirectly) related to an assignment variable.

Pdst
Ej

: Predicates whose validity in successor blocks may be affected by Ej , i.e. predicates
containing an assignment variable.

Instead of solving the original abstract transition constraint R#
c , it suffices to solve

g ∧
∧

pi∈Psrc
c

(
b0i ⇔ pi

)
∧

k∧
j=1

∧
pi∈Pdst

Ej

(
bji ⇔WPEj (pi)

)
,

where Psrc
c :=

⋃k
j=1 Psrc

Ej
, without losing precision, given that solutions are manually

adapted, such that predicates not in a Pdst
Ej

retain their value.

4.1.4. Expression Decomposition

As illustrated in the previous section, rarely all predicates must be considered when
solving the abstract transition constraint. However, predicates which couple several
variables often unnecessarily impair the effectivity.

For example, consider the command x > 0→ 1.0 : (x′ = x− 1) and the predicates

P = {x > 1, x = 1 ∧ y > 0, y = 0} .

In this case, the relevant destination predicates correspond to {x > 1, x = 1 ∧ y > 0}
and, due to the coupling of x and y in x = 1 ∧ y > 0, all predicates are relevant source
predicates. However, strictly sticking to the procedure for derivation of refinement
predicates will often introduce such ones, e.g. a command’s guard is often a conjunction
of constraints over different variables.

To this end, we propose decomposition of predicates, which recursively splits a pred-
icate at Boolean operators. For example, the predicate x = 1 ∧ y > 0 is decomposed
into the predicates x = 1 and y > 0. As a result, instead of P, we can equivalently use
the set

{x > 1, x = 1, y > 0, y = 0} ,

76

4.1. Optimising Abstraction

without losing expressivity. In fact, we even get more expressivity, enabling the new set
of predicates to distinguish between states where ¬ (x = 1)∧ y > 0 or x = 1∧¬ (y > 0)
holds. Although the decomposition yields larger sets of predicates and thereby theo-
retically increases the complexity of the abstract transition constraint, we can decouple
many variables and in practice get simpler transition constraints, using the relevant
predicates optimisation.

Let us reconsider the command x > 0 → 1.0 : (x′ = x − 1) with respect to the
decomposed set of predicates. This time, both the set of relevant source and destination
predicates are {x > 1, x = 1}, which clearly yields a simpler transition constraint.

Note that decomposition of an Boolean expression not necessarily decouples vari-
ables, e.g. the decomposition of an expression x ≥ y ∨ x + 1 ≥ y yields the predicates
{x ≥ y, x+ 1 ≥ y} without decoupling x and y. Nevertheless, expression decomposition
always increases the number of predicates to consider. Thus, an even better approach
would be to only decompose expressions if the resulting predicates couple strictly less
variables.

4.1.5. Unrelated Commands

Often, the introduction of a new refinement predicate only affects a few commands.
For example, consider the command x > 0 → 1.0 : (x′ = x − 1) from the previous
section and the predicates {x > 1, x = 1, y > 0}. We know that employing the relevant
predicates optimisation we can obtain the solutions by solving the abstract transition
constraint with respect to the relevant source and destination predicates {x > 1, x = 1}.
The irrelevant destination predicates, in our case {y > 0}, simply retain their value.

Now, if we were to add another refinement predicate y = 0, this would neither af-
fect the relevant source predicates nor the relevant destination predicates, hence not
affecting the solutions of the simplified abstract transition constraint, either. For such
commands, unrelated to a refinement predicate, the new MTBDD representing the
command is obtained from the old MTBDD, extended with the encoding of the new
predicate retaining its (in)validity.

To exploit this circumstance, we separately cache the MTBDDs representing each
command, instead of solely keeping a monolithic representation Dsys of the system.

4.1.6. Reachable State Space as Constraint

We know that the addition of a refinement predicate can only split existing blocks of
the current state space but never introduce “new” blocks. Accordingly, when solving
the abstract transition constraint, we know that solutions of the transition constraint
extended with respect to a new refinement predicate can only be extensions of solutions
of the previous refinement iteration.

For example, let c be a command whose transition constraint solutions indicate that
there are only three blocks

(
b01, b

0
2, b

0
3

)
∈ {(0, 0, 1) , (0, 1, 1) , (1, 0, 0)} which satisfy its

guard. As a result, on addition of a fourth predicate, we do not have to consider all 24

77

4. Optimisation Opportunities

possible valuations for
(
b01, b

0
2, b

0
3, b

0
4

)
, but only those extending previous solutions, i.e.

(0, 0, 1)× {0, 1} , (0, 1, 1)× {0, 1} and (1, 0, 0)× {0, 1} .

To derive a constraint, which ensures that only extensions of the current solutions
are taken into consideration, we can use the command’s MTBDD Dc, which essentially
corresponds to the solutions of R#

c . The source blocks of a command can be obtained
by existentially abstracting from all but the source predicate variables:

Dsrc
c = ExistsAbstract

((
src⊥, act , opt , upd , dst

)
,Dc 6= 0D

)
.

The constraint can then be derived from interpreting the BDD Dsrc
c as an expression,

as illustrated in Figure 4.5.

1

srcp1

srcp2

srcp3

(a) Dsrc
c

(
b01 ⇒

)
∧
(
¬b01 ⇒

)

(
b02 ⇒ false

)
∧
(
¬b02 ⇒

)

(
b03 ⇒ false

)
∧
(
¬b03 ⇒ true

) (
b03 ⇒ true

)
∧
(
¬b03 ⇒ false

)
(b) Derived constraint

Figure 4.5.: Deriving the source predicate constraint from Dsrc
c

Note that successor blocks in the form of the destination bit-vectors
(
bji , . . . , b

j
i

)
, 1 ≤

j ≤ deg(c) can be constrained in a similar way.

4.2. Optimising Value Iteration

While the previous section illustrated optimisations of the abstraction and construction
process, this section proposes techniques to speed up the actual analysis process.

4.2.1. Static Pre-computation of Reachability

We have already seen an example of value iteration needing infinitely many steps to
reach a fixed point (Example 2.39) and accordingly introduced a respective termination
criterion in our symbolical value iteration (Algorithm 4). However, using this criterion
we will often get near-1 probability results when they should actually be exactly 1.

In this section, we propose symbolic procedures to compute the sets of blocks having
exactly the reachability probabilities 0 and 1. More often than not this fixes probabilities
for a significant part of the state space, thereby reducing the number of blocks to consider
in the actual value iteration. Though our procedures analyse SGs, they are based on
respective pre-processing algorithms for PA [Rutten et al., 2004].

78

4.2. Optimising Value Iteration

Algorithm 7 Pre-computation Prob1

1: procedure Prob1(Dsys , p1 max , p2 max ,DG)

2: Du,01
sys ← Abstract

(
+, upd ,Dsys

)
6= 0D . Valid, unlabelled distributions

3: D01
Opt ← ExistsAbstract

(
dst ,Du,01

sys

)
. Valid options

4: D01
Act ← ExistsAbstract

(
opt ,D01

Opt

)
. Valid actions

5: D01
V1
← ExistsAbstract

(
act ,D01

Act

)
. Valid player 1 vertices

6: Dsrc
maybe ← D01

V1
. Initially all blocks may be “yes”

7: maybeDone ← false
8: while ¬maybeDone do . Outer fixed point

9: Ddst
maybe ← ReplaceVar

(
src, dst ,Dsrc

maybe

)
10: Dsrc

yes ← ReplaceVar (src, dst ,DG) . Initially, only goal blocks seem “yes”
11: yesDone ← false
12: while ¬yesDone do . Inner fixed point
13: Ddst

yes ← ReplaceVar
(
src, dst ,Dsrc

yes

)
14: DOpt ,∀maybe ← UniversalAbstract

(
dst ,Du,01

sys ⇒ Ddst
maybe

)
15: DOpt ,∃yes ← ExistsAbstract

(
dst ,Du,01

sys ·Ddst
yes

)
16: Dnew

yes ← DOpt ,∀maybe ·DOpt ,∃yes . Options satisfying both conditions
17:

18: if p2 max then . Determine actions realising 1-reachability
19: Dnew

yes ← ExistsAbstract
(
opt ,Dnew

yes

)
20: else
21: Dnew

yes ← UniversalAbstract
(

opt ,Dnew
yes ∨ ¬D01

Opt

)
·D01

Act

22: end if
23:

24: if p1 max then . Determine blocks realising 1-reachability
25: Dnew

yes ← ExistsAbstract
(
act ,Dnew

yes

)
26: else
27: Dnew

yes ← UniversalAbstract
(
act ,Dnew

yes ∨ ¬D01
Act

)
·D01

V1
28: end if
29:

30: Dnew
yes ← Dnew

yes ∨ReplaceVar (src, dst ,DG) . Goal is always “yes”
31: if fDnew

yes
= fDsrc

yes
then . Inner fixed point reached?

32: yesDone ← true
33: end if
34: Dsrc

yes ← Dnew
yes

35: end while
36: if fDsrc

maybe
= fDsrc

yes
then . Outer fixed point reached?

37: maybeDone ← true
38: end if
39: Dsrc

maybe ← Dsrc
yes

40: end while
41: return Dsrc

maybe

42: end procedure

79

4. Optimisation Opportunities

Algorithm 7 describes a procedure for computing the blocks with reachability 1, given
a set of goal blocks and the players’ objectives. In the following, we firstly explain its
workings and then conclude with an example.

The general idea is to consider two sets of blocks: the ones of which we know that
they realise the reachability probability 1 and the ones for which we don’t know yet
whether they do – respectively represented by Dsrc

yes and Dsrc
maybe . Accordingly, we only

consider those options leading to distributions which both stay in the “maybe”-blocks
and at least one destination is in the “yes” set. To this end, we employ a nested fixed
point iteration, where the inner iteration adds blocks which reach an “yes” block from
Dsrc

yes with probability 1, while the outer one removes blocks from Dsrc
maybe which turn

out to realise a reachability probability smaller than 1.
To begin with, we compute BDDs representing valid parts of the Menu-game repre-

sented by Dsys and initialise the “maybe”-set to all blocks of the system (lines 2-7).
Since, by definition, the reachability of a goal block is 1, we start the inner iteration
with the “yes” set of goal blocks.

As mentioned above, the inner iteration only considers options leading to distribu-
tions, which do not leave the “maybe”-blocks and at least one destination is “yes”.
Note that, for the first condition, we cannot simply universally abstract Du,01

sys from the
destination variables since this would also take the invalid transitions (mapped to 0)
into consideration. Thus, in line 14, we use the implication to ensure that only valid
destinations, which can actually be reached with a probability greater than 0, must be
in the “maybe”-set. Subsequently, line 15 determines the options satisfying the second
condition. The multiplication of both MTBDDs, corresponding to the intersection of
the sets of options, gives us the options which may realise a 1-reachability.

Lines 18 to 28 select options and actions corresponding to the players’ objectives.
Note that when maximising, it suffices for a single choice realising the value 1 to exist,
while when minimising, a choice realising reachability 1 will only be chosen if all choices
realise the value 1. However, when universally abstracting, we again have to make sure
that the invalid choices do not affect the outcome. Also, bear in mind that goal states
may not reach other goal states with probability 1, thus not being contained in the new
set of “yes”-blocks. As a result, we ensure that the goal blocks stay in “yes” in line 21.

Having determined new seemingly “yes”-blocks Dsrc
yes we update the old “yes”-set and

finish the inner iteration once the set does not change anymore. The blocks found
to be in “yes” in the inner iteration are then used to restrict the set of “maybe”-
blocks, essentially removing all blocks which do not seem to be “yes”. Similar as for the
inner iteration, the outer iteration updates the shrinking set of “maybe”-blocks until it
stabilises.

Example 4.2. We illustrate the procedure on the Menu-game illustrated in Figure
4.6, letting B5 be the only goal block. Note that we did not annotate the transition
probabilities as their exact values are not relevant for the algorithm. Let us compute
the blocks realising the lower bound 1 for maximal probabilistic reachability, i.e. let
player 1 maximise and player 2 minimise.

Initially, the “maybe”-set Bmaybe = {B0, B1, B2, B3, B4, B5} corresponds to all player

80

4.2. Optimising Value Iteration

1 vertices and the “yes”-set Byes = {B5} is the goal set. Clearly, the only distributions
leading to blocks from Byes (and staying in Bmaybe) are {µ7, µ8, µ9}. However, while
all options of the player 2 vertices v6 and v7 reach one of these distributions, v5 does
not. The only blocks leading to v6 and v7 are B4 and B5. Correspondingly, we extend
Byes with both, obtaining Byes = {B4, B5}. Subsequent steps proceed alike and are
summarised in Table 4.1.

B0

B1 B2 B3

µ7

v5

B4

µ8v6
B5

µ9

v7

Figure 4.6.: A Menu-game with the goal set {B5}

Outer Iteration Bmaybe Inner Iteration Byes

#0 B0, B1, B2, B3, B4, B5 #0 B5

#2 B4, B5

#3 B2, B3, B4, B5

#4 B0, B2, B3, B4, B5

#5 B0, B2, B3, B4, B5

#1 B0, B2, B3, B4, B5 #0 B5

#1 B4, B5

#2 B3, B4, B5

#3 B3, B4, B5

#2 B3, B4, B5 #0 B5

#1 B4, B5

#2 B3, B4, B5

#3 B3, B4, B5

Table 4.1.: Prob1 for lower bound of maximal probabilistic reachability

81

4. Optimisation Opportunities

Knowing which blocks reach the goal set with probability 1, we incorporate them into
the value iteration procedure by treating them like goal blocks, i.e. fix their reachability
probability at 1 to avoid waiting for their value to converge. This effectively reduces
the number of states to consider and the number of iterations needed.

Dually to Prob1, we propose a symbolic variant of Pass’ explicit procedure Prob0,
which determines the blocks where the reachability probability is 0. Here, the general
idea is to determine “yes” blocks which have a reachability probability greater than 0
and return the complementary set. We don’t go into detail though, as it is very similar
to Prob1, the main difference being that a single fixed point iteration suffices.

Algorithm 8 Pre-computation Prob0

1: procedure Prob0(Dsys , p1 max , p2 max ,DG)

2: Du,01
sys ← Abstract

(
+, upd ,Dsys

)
6= 0D . Valid, unlabelled distributions

3: D01
Opt ← ExistsAbstract

(
dst ,Du,01

sys

)
. Valid options

4: D01
Act ← ExistsAbstract

(
opt ,D01

Opt

)
. Valid actions

5: D01
V1
← ExistsAbstract

(
act ,D01

Act

)
. Valid player 1 vertices

6: Dsrc
yes ← ReplaceVar (src, dst ,DG) . Initially, only goal blocks seem “yes”

7: done ← false
8: while ¬done do . Fixed point iteration
9: Ddst

yes ← ReplaceVar
(
src, dst ,Dsrc

yes

)
10: Dnew

yes ← ExistsAbstract
(

dst ,Du,01
sys ·Ddst

yes

)
. DOpt ,∃yes from Prob1

11: if p2 max then . Determine actions realising 1-reachability
12: Dnew

yes ← ExistsAbstract
(
opt ,Dnew

yes

)
13: else
14: Dnew

yes ← UniversalAbstract
(

opt ,Dnew
yes ∨ ¬D01

Opt

)
·D01

Act

15: end if
16: if p1 max then . Determine blocks realising 1-reachability
17: Dnew

yes ← ExistsAbstract
(
act ,Dnew

yes

)
18: else
19: Dnew

yes ← UniversalAbstract
(
act ,Dnew

yes ∨ ¬D01
Act

)
·D01

V1
20: end if
21: Dnew

yes ← Dnew
yes ∨ReplaceVar (src, dst ,DG) . Goal is always “yes”

22: if fDnew
yes

= fDsrc
yes

then . Fixed point reached?
23: done ← true
24: end if
25: Dsrc

yes ← Dnew
yes

26: end while
27: return D01

V1
· ¬Dsrc

yes . Valid blocks not realising a reachability probability > 0
28: end procedure

Note that for the states found by either Prob1 or Prob0, we can also derive respec-

82

4.2. Optimising Value Iteration

tive strategies by (similarly to Algorithm 6) storing the respective minimal and maximal
representative choices instead of just abstracting from them. To this end, we make an-
other (inner) iteration of the respective procedure after the fixed point is reached, where
we store the representatives.

4.2.2. Reusing Previous Reachability Values

In Section 3.5.3, we illustrated the backward refinement process, which, in every refine-
ment iteration, constructs a new Menu-game and starts the respective value iterations
for lower and upper bound from scratch. However, using the pre-computation procedure
Prob0, we can reuse the previous reachability results partially and thereby reduce the
number of iterations needed for convergence.

Let us begin with Figure 4.7, illustrating why we can’t just keep the previous reach-
ability values without further modification. The depicted graph is a fragment of a
greater Menu-game. The relevant information here is that, employing value iteration
for maximal probabilistic reachability, we determined the bounds [0, 0.9] for B0. The
lower bound is obviously attributed to the self-loop-option while the upper bound is
propagated from the lower right successor.

Now, assume that a refinement step does not split B0 but tightens the bounds of
the lower right successor to [0.2, 0.8]. If we were to keep the reachability results from
the previous refinement step and initialise the value iteration with the old values, the
maximising option in block B0 would be to take the self-loop, since at some point the
0.8 will propagate to the lower right successor and the self-loop will seem to yield the
(better) reachability probability 0.9.

The real cause for this behaviour is not exactly the self-loop though, but the existence
of a 0-reachability-strategy for the block B0 – the same problem can occur with greater
loops. As a result, when initialising the value iteration with previous reachability results,
we may only keep the values for such blocks, which do not have a 0-reachability-strategy,
i.e. the blocks not covered by Prob0 with both players minimising.

B0 [0, 0.9]

[0.2, 0.9]

1.0

1.0

Figure 4.7.: A fragment of a Menu-game prior to refinement

83

4. Optimisation Opportunities

4.2.3. Pivot-picking Policies

A crucial step of the backward refinement procedure is the choice of a pivot block, since
picking the “right” blocks results in fewer refinement iterations. Although Section 3.5.5
illustrated how to determine the set of pivot blocks, it is not clear yet which one to
actually use to derive refinement predicates. To this end, we propose three policies for
picking pivot blocks.

Random Picking the “best” block is hard, as the choice heavily depends on the seman-
tics of the (never built) concrete state space and the goal predicates. Thus picking
a pivot block randomly doesn’t seem so unreasonable.

Maximal deviation By definition, pivot blocks introduce imprecision. Thus, aiming to
reduce imprecision, the maximal deviation policy picks a pivot state where the
reachability bounds differ the most.

Nearest maximal deviation While the maximal deviation policy may pick a block far
away from the initial block, usually unlikely to be visited, this policy performs a
breadth-first search starting in the initial block and picks the nearest pivot block it
encounters. If several blocks are found at the same depth, the maximal deviation
policy is employed to resolve the choice. Here, the main idea is that nearer blocks
are more likely to be visited and thus will more likely improve the precision.

4.2.4. Strategy-reachable Pivot Blocks

Not all pivot blocks attribute to the imprecision at the initial block. Tracing the lower
and upper bound strategies, we can see where choices deviate and which ones attribute
to the bounds at the initial block.

Thus, it is reasonable to only consider pivot states, which can actually be reached with
the lower and upper bound strategies, as only these may contribute to the imprecision
at the initial block, thereby avoiding refinement of not expedient pivot blocks.

4.2.5. Removing Goal Successors

Focusing on probabilistic reachability, it is irrelevant what happens once a goal block
is reached. As a result, we can safely remove all outgoing transitions of goal blocks,
potentially cutting off an irrelevant part of the system or at least reducing the system’s
MTBDD.

84

5. Symbolical Backward Refinement in
Practice

In the previous chapters, we elaborated on a framework for symbolic analysis of prob-
abilistic reachability. In this chapter, we evaluate our prototypical implementation of
said approach. We begin with some details about our implementation, which may be
helpful for reproducibility of our results. Afterwards, we illustrate the case studies,
which will subsequently be used for evaluation. Besides evaluating the abstraction and
value iteration, we also compare our implementation to the reference implementation
Pass.

5.1. Implementation Details

This section gives insight on some implementation-specific decisions we made. Bear in
mind, that these details are relevant to the evaluation results and must be considered
for reproducibility.

Variable Ordering In Section 2.3, we have illustrated that the variable ordering has a
significant impact on a MTBDD’s size. To this end, in contrast to our illustrations, we
initially order them as follows:

act ≺ upd ≺ src⊥ ≺ dst⊥ ≺ srcp1 ≺ dstp1 ≺ · · · ≺ srcpn ≺ dstpn ≺ opt .

Note the interleaved ordering of source and destination variables. This heuristic was
successfully applied in [Parker, 2002] to represent PA as MTBDDs and thus adapted
by us for the Menu-game representation. Using the CUDD1 library for our MTBDDs
we also make use of its dynamic variable reordering when solving the games with our
purely symbolic engine – the reordering strategy being group sift [Minato, 1993].

Avoiding Trap-successors and Concrete Deadlocks According to the Definition 3.8,
a player 2 vertex must have a trap-vertex successor if the action taken to get to this
vertex is not enabled for all states subsumed by the respective block. Additionally,
self-loops must be introduced for blocks which subsume deadlock states.

Practice has shown, that most of the time the first refinement iterations will yield
the commands’ guards as refinement predicates, since blocks are usually so coarse that
states enabling different sets of actions end up in the same block. Thus, to avoid wasting

1http://vlsi.colorado.edu/~fabio/CUDD/

85

http://vlsi.colorado.edu/~fabio/CUDD/

5. Symbolical Backward Refinement in Practice

resources for such unnecessary computations, we directly add the guards of a program
to the initial set of predicates. As a result, blocks contain only states enabling the
same set of actions, consequently making trap vertices unreachable. In addition, due
to this grouping, all concrete deadlock states end up in the same block. Considering
these circumstances, the AddTrap-procedure from Algorithm 2 may be skipped and
the FixDeadlocks-procedure simplified to only fix (abstract) deadlock blocks.

5.2. Overview of Case Studies

To study the feasibility of our symbolical approach to backward refinement and the
impact of the proposed optimisations, we applied it to several case studies, from the
Prism website2, which can also be found in the appendix.

Crowds Protocol The Crowds Protocol [Reiter and Rubin, 1998] is an anonymity pro-
tocol, modelling the routing of a message through a system of N members – the crowd.
Instead of simply sending the message directly to the destination, the sender randomly
selects a member from the crowd and forwards it to him with probability 1 − pf or
delivers the message directly to the destination with probability pf . The probability for
a recipient to be a bad crowd member is pbad .

In contrast to a good member, which, like the sender, either forwards the message to
another member or straight to the destination, a bad one does not adhere to the rules,
sending the message directly to the designated destination, assuming that the sender of
the message was the original sender.

Here, for N = 5, our property of interest is the minimal probability for a bad member
to observe a message from the first crowd member. It is known that for the given pa-
rameter the resulting probability is 0.33. Note that the respective model is technically
a DTMC, since no non-determinism is involved, but can be interpreted as a PA. Ac-
cordingly, the minimal and maximal probabilistic reachability coincide. For reference,
the concrete model has 8607 states and checking it with Prism takes 830ms.

Randomised Consensus Shared Coin Protocol This case study models the shared
coin protocol [Aspnes and Herlihy, 1990], where N processes return a preference for
either 1 or 2. The consensus is realised by a shared counter, initially is set to 0, which is
incremented or decremented by one, depending on the result of a process’ coin toss. You
can think of it as a collective random walk parametrised by the number of processes. The
coin tossing continues until the shared counter’s value leaves the interval [−N ·K,N ·K],
where K > 1 is another parameter of the model, and respectively determines the overall
preference.

Here, for N = 2,K = 2, our property of interest is the minimal probability for the
protocol to terminate with all processes giving the preference 1. It is known that this
probability is equal to 0.38. Note that this model corresponds to a PA since it introduces

2http://www.prismmodelchecker.org/casestudies/

86

http://www.prismmodelchecker.org/casestudies/

5.3. Evaluation

non-determinism by allowing several processes to toss their coins simultaneously. It has
272 states and checking it with Prism takes 810ms.

Asynchronous Leader Election Protocol This case study models the leader election
protocol of [Itai and Rodeh, 1990], where N processors on an asynchronous ring topol-
ogy elect one amongst them as leader.

Initially all processors are active and perform the following sequence of instructions
until they become inactive and only relay messages:

1. Toss a coin, and depending on the result, send either 0 or 1 to next processor.

2. Become inactive if 0 was sent but 1 is received from the preceding processor.

3. Send a counter around the ring to check whether other processors are still active.
Start all over, if it is the case, otherwise become leader.

Here, for N = 4, we are interested in verifying that the minimal probability for
the protocol to actually elect a processor is 1 – we know it is. Note that the non-
determinism of this model is attributed to the asynchonicity of the communication
channel, i.e. no guarantee on the proper ordering of the received messages is given. The
concrete semantics has 3172 states and checking it with Prism takes 1010ms.

Wireless LAN The last case study [Kwiatkowska et al., 2002] models the IEEE 802.11
Wireless LAN Collision Avoidance mechanism for two wireless stations. When two sta-
tions transmit a message in the same time frame, i.e. their messages collide on the
transmission medium, both have to retransmit their message at some later point in
time. To reduce the likelihood of another collision, both stations independently deter-
mine a waiting time, based on a randomised exponential backoff rule. The model is
parametrised by a maximum number of collisions COL to support and the maximal
time a transmission may take TIME TRANS MAX .

For this model, we are interested in the maximal probability for two collisions occur,
if COL = 3 and TIME TRANS MAX = 10. The corresponding PA has 9003 states
and checking it with Prism takes 940ms.

5.3. Evaluation

We integrated our prototypical implementation of the symbolic backward refinement
procedure in the Stochastic Reward Model Checker (Storm), developed by the MOVES-
group3 at RWTH University. This saved us writing a Prism-language parser, and also
allowed us to transform the symbolical representation of a Menu-game into an explicit
one.

Based on the introduced case studies, we now evaluate our procedure and the impact
of the proposed optimisations on the run time. Since the abstraction and probabilistic

3http://moves.rwth-aachen.de/

87

http://moves.rwth-aachen.de/

5. Symbolical Backward Refinement in Practice

reachability analysis parts are independent we evaluate them separately. However, to
justify the symbolic approach, we also compare the memory consumption of both the
symbolic and the explicit analysis, since the main reason for using MTBDDs is not the
speed of MTBDD-operations but their space-efficient storage scheme. Subsequently, we
also evaluate the effect of our refinement policies on the number of refinement iterations
and compare the performance of our approach to that of Pass.

The experiments were carried out on an Intel Core i7-4770 processor (3,4 GHz) with
8 GB RAM, however, single-threaded and allowed to use at most 2 GB memory. The
solving of abstract transition constraints was accomplished by employing the Z3 Smt-
solver [de Moura and Bjørner, 2008] in version 4.3.2. Bear in mind that all of our time
measurements correspond to a wall clock and not to the pure CPU time.

5.3.1. Abstraction and Construction

The relevant information for evaluation of the abstraction and construction part is the
time spent to solve all abstract transition constraints and construct the reachable part
of the corresponding Menu-game. To this end, we compare how the abstraction optimi-
sations from Section 4.1 impact the performance. We denote the following (incremental)
setups in our diagrams:

Normal This corresponds to incrementally solving the original abstract transition con-
straint as illustrated in Section 4.1.2.

Range This setup extends the transition constraints of “Normal” with assertions of the
variables’ ranges (see Section 4.1.1).

Relevant In addition to the above optimisations, we now only consider relevant predi-
cates in the transition constraint (see Section 4.1.3).

Decomp This is the same as “Relevant”, however, with decomposition of predicates (see
Seection 4.1.4). Note that the decomposition increases the number of predicates
(and expressiveness), such that the number of refinement iterations is generally
lower than in the upper cases.

Unrelated This setup also avoids solving transition constraints for unrelated commands
(see Section 4.1.5).

Reach This one has all the above optimisations but also adds the reachable state space
constraint as seen in Section 4.1.6.

Besides the comparison of run times for the different setups, we also highlight the ratio
of time spent on Smt-solving, MTBDD operations and computation of the reachable
state space for the fastest setup, which will turn out to always be “Unrelated”.

88

5.3. Evaluation

Crowds Protocol

Figure 5.1 depicts our measurements for the Crowds Protocol case study. It is easy to
see that the decomposition of predicates is necessary to meet the increasing complexity
of the transition constraints, since otherwise the Smt-solving time grows exponentially
with the size of the predicate set.

As expected, avoiding solving transition constraints of unrelated commands slightly
increases the performance. However, at first glance unexpectedly, “Reach” performs
worse. This is attributed to the effort needed to translate a BDD to a constraint.

5,000

40,000

80,000

1.4 · 105

T
im

e
[m

s]

Normal
Range
Relevant
Decomp.
Unrelated
Reach

0 1 2 3 4 5 6 7
0

50

100

150

Refinement Iteration

(a) Menu-game construction time

0 1 2 3
0

20

40

60

80

100

120

Refinement Iteration

T
im

e
[m

s]

Smt
MTBDD
Reach
other

(b) Detailed abstraction time

0 1 2 3
0

50,000

1 · 105

1.5 · 105

Refinement Iteration

C
ou

n
t

Player 1
Player 2
Prob.

(c) State space evolution

Figure 5.1.: Crowds Protocol – abstraction measurements

89

5. Symbolical Backward Refinement in Practice

Overall, “Unrelated” performs best. Figure 5.1b indicates that for a model of this
size, the analysis of the reachable state space takes even longer than solving the transi-
tion constraints and the time spent on constructing the game’s MTBDD is practically
negligible. Despite the growing number of predicates the abstraction times hardly differ.

Note that the initial construction (refinement iteration zero) also comprises the predi-
cate decomposition, partitioning of related variables, Smt-solver instantiation and initial
creation of all necessary objects, which explains the big ratio spent on “other”.

The state space grows linearly until, in step 2, a refinement predicate is found, con-
straining the reachable space significantly. Keep in mind that the number of player 1
and player 2 vertices is equal, since the model is actually a DTMC.

Consensus Protocol

Figure 5.1 illustrates our measurements for the Consensus Protocol case study. Similar
to “Crowds”, the first three setups scale badly, while the others perform equally good.

0 1 2 3 4 5 6 7 8 9
0

1,000

2,000

3,000

4,000

Refinement Iteration

T
im

e
[m

s]

Normal
Range
Relevant
Decomp.
Unrelated
Reach

(a) Menu-game construction time

0 1 2 3 4 5

40

60

80

100

120

Refinement Iteration

T
im

e
[m

s]

Smt
MTBDD
Reach
other

(b) Detailed abstraction time

0 1 2 3 4 5

200

400

600

800

1,000

Refinement Iteration

C
ou

n
t

Player 1
Player 2
Prob.

(c) State space evolution

Figure 5.2.: Consensus Protocol – abstraction measurements

90

5.3. Evaluation

In contrast to “Crowds”, most of the time is spent on Smt-solving and MTBDD
construction. We observe that both the abstraction time and state space grow linearly
as no restricting predicate is found.

Leader Election Protocol

In contrast to the previous systems, the “Leader Election” is so complex that the first
three setups do not even manage to solve the transition constraints in a reasonable time
frame (30min) and are thus omitted in the following.

0 1 2 3 4

1,000

1,500

2,000

2,500

Refinement Iteration

T
im

e
[m

s]

Decomp.
Unrelated
Reach

(a) Menu-game construction time

0 1 2 3 4

500

1,000

1,500

2,000

Refinement Iteration

T
im

e
[m

s]

Smt
MTBDD
Reach
other

(b) Detailed abstraction time

0 1 2 3 4

5,000

10,000

15,000

20,000

Refinement Iteration

C
ou

n
t

Player 1
Player 2
Prob.

(c) State space evolution

Figure 5.3.: Leader Election Protocol – abstraction measurements

Figure 5.3 illustrates how avoiding solving of transition constraints for unrelated
commands outperforms the simple predicate decomposition. While “Decomp” grows
linearly, “Unrelated” takes about constant time after the initial construction.

A similar effect can be observed for the ratio of sub procedures. After the initial
construction, the run time distribution hardly changes – the Smt ratio increases slightly.

91

5. Symbolical Backward Refinement in Practice

The refinement predicates seem to have not much of an effect on the state space which
shrinks only slowly.

Wireless LAN Protocol

Similar to “Leader Election”, this is a rather complex model, where the first three setups
turn out to be infeasible, see Figure 5.4. The results are quite similar, too, in the sense
that “Unrelated” outperforms the others.

Nevertheless, many refinement iterations are needed to determine a “fine” enough
set of predicates. During this time, besides the initial step, most of the time is spent
on construction of the Menu-game’s MTBDD and computation of the reachable state
space on this very representation.

The big number of refinement steps is actually attributed to the property we want to
check. Since we are interested in the maximal probability for two collisions to occur, all
possible backoff timings of the system must be considered. Accordingly, each refinement
iteration only adds another predicate to distinguish backoff timings of both stations s,
i.e. backoffs = i with s ∈ 1, 2, i ∈ {0, . . . , 15}. Without the derivation of some restricting
predicates, discarding spuriously reachable parts of the state space, such growth of the
state space is unavoidable.

In contrast to the sightly smaller “Leader Election”, we observe that the growth of the
state space is actually exponential. This is not surprising, considering that the added
predicates enable all combinations of backoff timings.

Conclusion

The most outstanding observation is the huge performance gap between “Relevant” and
“Decomp”. Up to that point (“Relevant”) the abstraction time grows exponentially with
the refinement count, but our experiments indicate it turning linear (almost constant)
with “Decomp”. This points out that such an Smt-based abstraction scales badly if
many variables are tightly coupled, i.e. if guards or assignments contain arithmetic
expressions over many different variables. Luckily, in practice this is rarely the case.

Furthermore, “Reach” turns out to not be an optimisation after all, which is essen-
tially attributed to the effort of translating the BDD to a constraint but also due to
our incremental use of the Smt-solver instances, which store auxiliary information and
obviate big parts of the BDD.

Considering that the time spent on Smt-solving drops significantly after the initial
construction and stays low, it seems that the incremental usage of Smt-solvers in com-
bination with the “unrelated commands” optimisation are (besides predicate decompo-
sition) key to a scalable abstraction. For example, in Figure 5.4, the Smt-usage hardly
changes or affects the overall run time, despite the state space growing exponentially.

Unfortunately, our results also indicate that for most of our case studies (especially
the more complex ones) the operations on MTBDDs become the bottleneck. This can be
best seen in Figure 5.4b where about 80%-90% of the run time is spent on constructing
the system’s MTBDD or computing the reachable state space. However, since the

92

5.3. Evaluation

absolute time spent on these operations is rather small, it seems to be worthwhile to
invest more time in finding ways to reduce the number of refinement iterations.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

5,000

10,000

Refinement Iteration

T
im

e
[m

s]

Decomp.
Unrelated
Reach

(a) Menu-game construction time

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2,000

4,000

6,000

Refinement Iteration

T
im

e
[m

s]

Smt
MTBDD
Reach
other

(b) Detailed abstraction time

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10,000

20,000

30,000

Refinement Iteration

C
ou

n
t

Player 1
Player 2
Prob.

(c) State space evolution

Figure 5.4.: Wireless LAN Protocol – abstraction measurements

93

5. Symbolical Backward Refinement in Practice

When it comes to comparing the state spaces sizes of the Menu-games and the PA
they over-approximate, it turns out that the number of player 1 vertices is indeed never
greater than the number of concrete states in the respective PA. However, to be fair,
the number of all players’ vertices is clearly higher for the chosen case studies.

While this seems discouraging at first, we stress that the backward refinement pro-
cedure is clearly tailored towards huge or infinite systems. We, however, used case
studies featuring (relatively) small state spaces, to allow for a reasonable visualisation
of the measurements. In fact, as expected, Menu-games significantly outperform the
analysis of concrete semantics (PA) for huge models. For example, the WLAN case
study, for COL = 20 and TIME TRANS MAX = 10000, corresponds to a PA with
8690343 states, while its Menu-game only has 31914 vertices overall. It takes Prism
11:38 minutes to construct the respective PA, while it takes Storm only 2:14 minutes
for the complete symbolic backward refinement procedure.

5.3.2. Probabilistic Reachability Analysis

The most relevant information for the actual analysis is the time it takes. Analogous to
the evaluation of the abstraction process, we evaluate the performance of the following
setups:

Normal This corresponds to first pre-computing blocks with reachability zero or one,
then incorporating these results in the value iteration. We consider this “Normal”
since the pre-computations are necessary if we want to verify that a probability is
exactly 1.

Reuse Res. In addition to the “Normal” case, we also reuse the reachability values of
the previous refinement iteration (see Section 4.2.2).

Goal Succ. Building on top of the above optimisations, this one also removes outgoing
transitions of goal blocks (see Section 4.2.5).

Explicit This is a special case, where we still pre-compute the blocks with reachability
zero or one symbolically, but then build an explicit representation of the sys-
tem. The value iteration is then carried out explicitly for those states not already
covered by the pre-computation results.

Similar as before, we also highlight the ratio of time spent for the pre-computations
and the actual value iteration for the fastest setup – as we will see it will always be the
explicit one.

Crowds Protocol

Figure 5.5 depicts our measurements for the Crowds Protocol case study. As to be
expected, the initial analysis takes the same effort for all symbolical approaches, while
the explicit approach outperforms all. Furthermore, the reuse of previous reachability

94

5.3. Evaluation

values significantly improves the “Normal” analysis time. While the middle-setups stay
approximately constant over the different refinement iterations, both “Normal” and
“Explicit” grow. The small number of refinement iterations does not suffice to properly
estimate the growth rate though – it is at least linear.

0 1 2 3
0

1,000

2,000

3,000

4,000

5,000

Refinement Iteration

T
im

e
[m

s]

Normal
Reuse Res.
Goal Succ.
Explicit

(a) Menu-game analysis time

0 1 2 3
0

100

200

300

400

Refinement Iteration

T
im

e
[m

s]

Prob0/1
VI

(b) Detailed analysis time

Figure 5.5.: Crowds Protocol – analysis measurements

The most striking observation is the similarity of the evolution of the analysis time
and the number of the game’s vertices, see Figure 5.1c. Actually, this is reasonable,
since the bigger a system is the longer the propagation of analysis values may take.

Consensus Protocol

The measurements for the Consensus Protocol (see Figure 5.6) clearly show exponential
growth for the symbolic value iterations. In contrast to “Crowds”, the “Normal” variant
is the best symbolic one, but, as before, “Explicit” outperforms the rest and grows
linearly with the number of refinement iterations.

0 1 2 3 4 5
0

500

1,000

Refinement Iteration

T
im

e
[m

s]

Normal
Reuse Res.
Goal Succ.
Explicit

(a) Menu-game analysis time

0 1 2 3 4 5
0

50

100

150

200

250

Refinement Iteration

T
im

e
[m

s]

Prob0/1
VI

(b) Detailed analysis time

Figure 5.6.: Consensus Protocol – analysis measurements

95

5. Symbolical Backward Refinement in Practice

This time, the ratio of pre-computation and actual value iteration is the other way
around – the pre-computations take about 75% of each analysis. However, this appear-
ance is deceiving. Since the respective Menu-game is a lot smaller than the one for
“Crowds” the explicit value iterations will obviously take significantly less time. As a
result, we can only say that evolution of the time spent on pre-computations corresponds
to the growth of the state space, as seen in Figure 5.2c.

Yet, since the pre-computation is the same for both symbolic and explicit variants,
it is easy to see that for a symbolic analysis the pre-computation percentage is a lot
smaller, as the value iteration run time grows exponentially.

Leader Election Protocol

The measurements for this case study seem quite similar to those of “Crowds”, however,
this time all symbolic variants perform approximately equally bad, with “Normal” being
the better one among them. As usual, “Explicit” outperforms the rest and grows linearly
with the number of refinements.

0 1 2 3 4
0

10,000

20,000

30,000

Refinement Iteration

T
im

e
[m

s]

Normal
Reuse Res.
Goal Succ.
Explicit

(a) Menu-game analysis time

0 1 2 3 4
0

2,000

4,000

6,000

Refinement Iteration

T
im

e
[m

s]
Prob0/1
VI

(b) Detailed analysis time

Figure 5.7.: Leader Election Protocol – analysis measurements

For this model, the pre-computation run time grows faster than expected, considering
that the size of the state space stays approximately constant. However, knowing that
for the property of interest the probability at the initial state must be 1, the reachability
for many other states should be 1, too. Hence, there is more information to propagate
than usually, which explains the slight growth. Overall, the run time does still seem to
be proportional to the evolution of the size of the state space.

Wireless LAN Protocol

The results of this case study are visualised in Figure 5.8. The analysis times indicate
an exponential growth of the run time for the symbolic approaches and linear growth
for the outperforming “Explicit” variant.

96

5.3. Evaluation

Surprisingly, the pre-computation run time stays rather expensive at around 700ms
over all refinement iterations – no clear trend is observable. It seems like the blocks
with reachability 0 or 1 are hardly affected by the refinement predicates, which explains
the lack of clear tendency.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

1,000

2,000

3,000

Refinement Iteration

T
im

e
[m

s]

Normal
Reuse Res.
Goal Succ.
Explicit

(a) Menu-game analysis time

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

500

1,000

1,500

Refinement Iteration

T
im

e
[m

s]

Prob0/1
VI

(b) Detailed analysis time

Figure 5.8.: Wireless LAN Protocol – analysis measurements

Conclusion

Overall, the value iteration time of the symbolical analyses seems to grow exponentially
while the explicit value iteration and pre-computations scale linearly. To shed some light
on this discrepancy, let us reconsider our measurements with respect to the MTBDD
storage scheme and some additional information on the probability bounds.

We know that the cost of operations on an MTBDD is closely tied to the symmetries
of the function it represents. However, during the value iteration, the game’s vertices
are assigned many different probabilities, which results in a significantly more irregular
MTBDD than the one representing the actual system. Operations and reordering on

97

5. Symbolical Backward Refinement in Practice

this MTBDD are costly. This is backed by our findings that the most expensive instruc-
tion of ValIterStep (Algorithm 5) is the computation of DMV – the matrix-vector
multiplication of the system’s representation with the current valuation.

Furthermore, this assumption is in accord with our observation that the symbolical
pre-computation does not suffer from such an exponential growth, but rather stays
linear. This is reasonable since the pre-computations operate on BDDs that abstract
from the actual probabilities and therefore only possess two terminal nodes, leveraging
the symmetry-exploiting storing scheme.

Another indication arguing that the many different terminal nodes correlate with the
bad scaling is that the first significant growth for the run times of symbolic variants
in both “Crowds” and “Leader Election” corresponds to a change of the bounds from
either 0 or 1 to some non-extremal value, e.g. from 0 to 0.24. Up to that point the
computation of DMV is rather cheap as multiplication with many extremal entries does
hardly affect the MTBDD’s symmetry.

However, the different terminal nodes go hand in hand with an increased number of
value iteration steps needed for convergence. In fact, it is the combination of many
costly operations on an rather irregular MTBDD which cause the exponential growth
for the symbolical approach. Since we can hardly avoid the high number of different
terminal nodes, it seems worthwhile to research techniques which decrease the number
of value iteration steps.

Since explicit representations are not affected by the actual valuations and the pre-
computations seem to grow linearly, it makes sense that “Explicit” grows linearly, too.

5.3.3. Symbolic vs. Explicit Memory Usage

When it comes to pure speed, transforming the state space into an explicit representation
seems to pay off. However, the actual argument for using symbolical representations is
their space-efficient storage scheme. Figure 5.9 visualises the peak memory consumption
for both the “Normal” symbolic approach and the one we denoted by “Explicit”.

Crowds Consensus Leader WLAN
0

200

400

600

800

57 65

452

624

90 74

645

842

Case Study

P
ea

k
m

em
or

y
u

sa
g
e

[M
B

] Symbolic
Explicit
Smt

Figure 5.9.: Memory consumption of symbolical and explicit approaches

98

5.3. Evaluation

Note that both approaches use the same Smt-based construction procedure. Thus, to
get a better idea of the memory usage, Figure 5.9 also indicates the amount of memory
used by Smt-solver instances. At a first glance, the ratio of memory used for solver
instances may seem surprisingly high. Remember, though, that our approach always
flattens modular programs, which results in high numbers of commands and solver
instances, respectively (> 100 for “Leader” and “WLAN”).

It is easy to see that the symbolic approach uses significantly less memory than the
explicit one. Furthermore, this is backed by the fact that “Explicit” is not a purely
explicit approach but profits from the space-efficient symbolical construction of the
state space. As a result, the difference to a purely explicit approach should be even
bigger.

Hence, we conclude that for bigger models, memory constraints may render an explicit
backward refinement impossible, while a symbolical approach may still be successful.

5.3.4. Pivot-picking Policies

In the following, we compare the impact of pivot picking policies on the number of
refinement iterations. To this end, we distinguish between the policies RND (Random),
MD (Maximal Deviation) and NMD (Nearest Maximal Deviation) proposed in Section
5.3.4. Note that we only consider strategy-reachable pivot states (see Section 4.2.4).
Figure 5.10 visualises our measurements, where we additionally plot the refinement
iterations needed by the reference tool Pass.

Crowds Consensus Leader WLAN
0

10

20

30

40

7 6
4

35

15

5 4

31

3
5 4

29

9

38

9

4

Case Study

R
efi

n
em

en
t

it
er

at
io

n
s

RND
MD
NMD
Pass

Figure 5.10.: Pivot policies’ impact on number of refinements

As expected, picking the nearest pivot block tends to yield the most goal-oriented
refinement predicates, resulting in small number of refinement iterations, while Pass
tends to make more refinement iterations.

99

5. Symbolical Backward Refinement in Practice

A closer look at Pass unveiled its use of an extension of our maximal deviation
policy. Instead of simply picking the pivot state with maximal deviation, Pass also
checks whether this pivot state is spurious or actually reachable in the concrete state
space. To this end, it encodes the semantics of the most probable path in terms of
an LIA formula and, in case of spuriousness, employs interpolants [McMillan, 2005] to
derive refinement predicates, which make this and similar blocks unreachable in follow
up refinement iterations.

Although, this may often increase the number of refinement iterations it may also
derive several predicates at once, which otherwise would have taken several refinement
iterations, using the “conventional” derivation procedure. The effect of this can best be
seen in the WLAN case study.

5.3.5. Storm vs. Pass

A direct comparison of our prototypical implementation to Pass is rather difficult,
considering that both use different representations and optimisations. We can compare
the total time both implementations need to compute the probabilities for our case
studies, though. To this end, we construct our model symbolically, but then distinguish
between our best symbolic and explicit analysis variants and Pass.

Crowds Consensus Leader WLAN
0

20,000

40,000

60,000

80,000

Case Study

T
im

e
[m

s]

Symbolic
Explicit
Pass

Figure 5.11.: Full reachability analysis run times of Storm and Pass

According to Figure 5.11, the results are mixed. While “Explicit” most of the time
performs similar to “Pass” the “Symbolical” performs significantly worse. This is not
surprising, considering the above evaluation of analysis times.

However, a clear trend can be observed. The more refinement iterations are involved,
the more likely Pass will outperform our implementation. The WLAN case study is an
example of such a case. It seems desirable to adapt Pass’ predicate derivation procedure
to both gain predicates which discard spurious blocks and potentially determine several
predicates in a single refinement step.

100

6. Assume-guarantee Style Extension for
Menu-games

Often, probabilistic systems are modelled in terms of several smaller but interacting
components. While the state spaces of the single components are rather small, a com-
posed system grows exponentially in the number of its components. To this end, assume-
guarantee style compositional techniques [Pnueli, 1985] aim to guarantee the validity of
properties of the composed systems from assumptions holding for its components.

For a system of two components, this concept can be captured by the following rule

L1 ‖ A |= P L2 ⊆ A
L1 ‖ L2 |= P

(ASym),

where L1 and L2 the systems components, A is an over-approximation of L2 and P
is some property to be satisfied [Komuravelli et al., 2012]. It suggests, that instead
of verifying the property P for the composition L1 ‖ L2, if suffices to verify it for
the composition L1 ‖ A, given that A is an over-approximation of L2. Note that the
semantics of composition, satisfaction and over-approximation depend on the actual
types of objects used to model components and properties.

In this chapter, we adapt this notion to Menu-games, such that in future work com-
positional probabilistic programs may be handled more adequately than just being flat-
tened.

6.1. Composition of Probabilistic Automata

So far we only considered flattened PA, which consist of a single module. To allow for
concurrent behaviour, we introduce the synchronisation of PA, each modelling a module,
via shared action labels. We also introduce the cross product for labelled distributions,
which yields a more accessible definition.

Definition 6.1 (Cross Product for Labelled Distributions). Let µ1 : U1×S → [0, 1] and
µ2 : U2×S → [0, 1] be labelled distributions. Their cross product µ1×µ2 : U1×U2×S →
[0, 1] is defined as

(µ1 × µ2) ((u1, u2) , s) = µ1(u1, s) · µ2(u2, s).

101

6. Assume-guarantee Style Extension for Menu-games

Definition 6.2 (Parallel Composition of PA [Kwiatkowska et al., 2010]). Let A1 =
(S1,Act1, U1,P1, sinit ,1) and A2 = (S2,Act2, U2,P2, sinit ,2). Their parallel composition
is again a PA

A1 ‖ A2 =
(
S1 × S2,Act1 ∪Act2, U1 × U2,P,

(
sinit ,1, sinit ,2

))
,

with (α, µ1 × µ2) ∈ P ((s1, s2)) if and only if one of the following holds:

• (α, µ1) ∈ P1(s1), (α, µ2) ∈ P2(s2) where α ∈ (Act1 ∩Act2) \ {aτ}

• (α, µ1) ∈ P1(s1), µ2 = 1.0 : (uτ , s2) where α ∈ (Act1 \Act2) ∪ {aτ}

• µ1 = 1.0 : (uτ , s1) , (α, µ2) ∈ P2(s2) where α ∈ (Act2 \Act1) ∪ {aτ},

where aτ acts as internal, non-synchronising action.

Example 6.3. Reconsider our running example from Listing 2.1. It models a system
which is initialised, does some work until run reaches zero and terminates. However,
while working it may break with a certain probability and end up in an error state.

This kind of behaviour could also have been modelled in a compositional way. For
example, we could have modelled the error behaviour as one PA and the nominal be-
haviour as another. Figure 6.1 depicts such a modelling, where we use r instead of run
and use a variable e to distinguish between error states.

t0 : e = 1

t1 : e = 2t2 : e = 3

work

0.97

0.03

end

1.0

aτ 1.0aτ 1.0

(a) Error model Aerr

s0 : r = −1

s1 : r = 2

s2 : r = 1

s3 : r = 0

init

1.0

work

1.0

work

1.0

end 1.0

(b) Nominal model Anom

Figure 6.1.: Compositional modelling

Since both the error model and nominal model share the actions work and end , these
can only be taken simultaneously. Accordingly, the error model cannot take the end

102

6.1. Composition of Probabilistic Automata

action unless the nominal model is in state s3. Also, as the composed system is supposed
to only break while working, the error state t2 can only be reached by synchronising
over the work action. The composed behaviour of these modules is visualised in Figure
6.2 and indeed corresponds to the PA JPsimpleK from Figure 2.6.

(t0, s0)
e = 1
r = −1

(t0, s1)
e = 1
r = 2

(t2, s2)
e = 3
r = 1

(t0, s2)
e = 1
r = 1

(t2, s3)
e = 3
r = 0

(t0, s3)
e = 1
r = 0

(t1, s3)
e = 2
r = 0

init

1.0

work

0.03 0.97

work

0.03 0.97
aτ 1.0

aτ 1.0
end

1.0

aτ 1.0

Figure 6.2.: Composition Aerr ‖ Anom

103

6. Assume-guarantee Style Extension for Menu-games

6.2. Composition of Menu-games

We have seen that the general idea of assume-guarantee style verification is based on
reasoning about a composed system L1 ‖ L2 from a simpler composition L1 ‖ A, where
A is an over-approximation of L2 with respect to the property of interest. In the context
of Menu-games a composed system A1 ‖ A2 is given by the parallel composition of PA.
We aim to define a parallel composition A1 ‖ ĜA2,Q2 , analogous to L1 ‖ A, where Q2 is
a partition of the state space of A2.

However, to keep the parallel composition symmetrical, we define a parallel composi-
tion for two Menu-games instead of a PA and a game. For that purpose, we lift the PA
A1 to a game ĜA1,S1 . Note that technically S1 is not a partition but we conveniently
use it here to denote the partition {{s} | s ∈ S1}.

To get an intuitively accessible definition, we aim to make is structurally similar to
the composition of PA. Therefore, we first of all provide an alternative definition of
Menu-games, which interprets the game’s edges as a transition relation δ, similar to the
approach in Section 3.2.

Definition 6.4 (Menu-game (Functional)). Let P be a probabilistic program, JP K =
(S,Act , U,P, sinit) its semantics and

ĜJP K,Q = ((V,E), (V1, V2, Vp), U, vinit)

its Menu-game with respect to a partition Q. An equivalent representation of the Menu-
game is given by the tuple

(V1,Act ,Opt , U, δ, vinit) ,

with

• the player 2 options are uniquely identified by Opt := (V2 × Vp) ∩ E

• the transition relation δ : V1 ×Act ×Opt ×DistU (V1), where

(v, α, β, µ) ∈ δ ⇐⇒ (v, (v, α)) ∈ E and β = ((v, α) , µ) ∈ E

Definition 6.5 (Parallel Composition of Menu-games). Let P1 and P2 be probabilistic
program modules and

ĜJP1K,Q1
=

(
V1,Act1,Opt1, U1, δ1, vinit ,1

)
(6.1)

ĜJP2K,Q2
=

(
V2,Act2,Opt2, U2, δ2, vinit ,2

)
(6.2)

their Menu-games. The parallel composition is again a Menu-game

ĜJP1K,Q1
‖ ĜJP2K,Q2

=
(
V1 × V2,Act1 ∪Act2,Opt1 ×Opt2, U1 × U2, δ,

(
vinit ,1, vinit ,2

))
,

where ((v1, v2) , α, (β1, β2) , µ1 × µ2) ∈ δ if and only if one of the following holds:

104

6.2. Composition of Menu-games

• (v1, α, β1, µ1) ∈ δ1, (v2, α, β2, µ2) ∈ δ2 where α ∈ (Act1 ∩Act2) \ {aτ}

• (v1, α, β1, µ1) ∈ δ1, µ2 = 1.0 : (uτ , v2), β2 = β1 where α ∈ (Act1 \Act2) ∪ {aτ}

• µ1 = 1.0 : (uτ , v1), β1 = β2, (v2, α, β2, µ2) ∈ δ2 where α ∈ (Act2 \Act1) ∪ {aτ}

and aτ acts as internal, non-synchronising action.

Example 6.6. Let us assume that the compositionAerr ‖ Anom is too costly to compute
and instead try to over-approximate it with Menu-games. Figure 6.3 illustrates both
the lifted error model ĜAerr ,Serr and the Menu-game ĜAnom ,Qnom of the nominal model
with respect to a partition Qnom = {{s0} , {s1, s2} , {s3}}.

{t0} : e = 1

{t1} : e = 2{t2} : e = 3

work

0.97

0.03

end

1.0

aτ 1.0aτ 1.0

(a) Lifted error model

{s0} : r = −1

{s1, s2} : 1 ≤ r ≤ 2

{s3} : r = 0

init

1.0

work

1.0

1.0

end 1.0

(b) Menu-game of nominal model

Figure 6.3.: Menu-games of components

The parallel composition of Menu-games is conceptually similar to the composition of
PA with the main difference, that for Menu-games, synchronising actions lead to a cross
product of successor options instead of successor distributions. Figure 6.4 visualises the
parallel composition of ĜAerr ,Serr and Menu-game ĜAnom ,Qnom .

105

6. Assume-guarantee Style Extension for Menu-games

({t0} , {s0})
e = 1
r = −1

({t0} , {s1, s2})
e = 1

1 ≤ r ≤ 2

({t2} , {s1, s2})
e = 3

1 ≤ r ≤ 2

({t2} , {s3})
e = 3
r = 0

({t0} , {s3})
e = 1
r = 0

({t1} , {s3})
e = 2
r = 0

init

1.0

work0.97

0.03
0.03 0.97

aτ 1.0 aτ 1.0
end

1.0

aτ 1.0

Figure 6.4.: Composition ĜAerr ,Serr ‖ ĜAnom ,Qnom

6.3. Assume-guarantee Rule

As already mentioned above, we aim to over-approximate a composed system A1 ‖ A2

by a composition A1 ‖ ĜA2,Q2 – technically ĜA1,S1 ‖ ĜA2,Q2 . In this section, we propose
an according assume-guarantee rule and reason about its correctness.

To begin with, consider two Menu-games GA and GB, where GB can simulate every

106

6.3. Assume-guarantee Rule

strategy pair (σ1, σ2) for GA, i.e. (σ1, σ2) is applicable to GB and induces the same
DTMC (up to renaming). Then the reachability probability of a set of goal states in
GA is clearly over-approximated by GB, since all (and possibly more) behaviour possible
in GA is covered. This is the basic idea behind our adaptation of the ASym-rule for
Menu-games.

Definition 6.7 (Assume-guarantee Rules for Menu-games). Let A1 and A2 be PA over
the states S1 and S2. Then, for a partition Q2 of S2, the following rules can be applied:

∀
σ2

sup
σ1

Prσ1,σ2G1‖G2

(
♦G#

)
∈ [a, b] G1 = ĜA1,S1 G2 = ĜA2,Q2

PrmaxA1‖A2
(♦G) ∈ [a, b]

,

and

∀
σ2

inf
σ1

Prσ1,σ2G1‖G2

(
♦G# ∪ S1 ×

{
v⊥1

})
∈ [a, b] G1 = ĜA1,S1 G2 = ĜA2,Q2

PrminA1‖A2
(♦G) ∈ [a, b]

,

where G ⊆ S1 × S2. Note that, as before, G# must be an exact representation of G in
G1 ‖ G2.

These rules say that for a PA A1 ‖ A2, composed of the components A1 and A2,
the probabilistic reachability with respect to a goal set G is over-approximated by the
composition of the component A1 (technically it is lifted to a game) and the Menu-game
of component A2 with respect to a partition Q2.

Let us look at why these rules are correct. In the previous chapters we have seen that
probabilistic reachability for an A can be over-approximated by its Menu-game ĜA,Q
with respect to some partition Q, i.e. the following rules are known to be correct

∀
σ2

sup
σ1

Prσ1 ,σ2

ĜA,Q

(
♦G#

)
∈ [a, b]

Prmax
A (♦G) ∈ [a, b]

,
∀
σ2

inf
σ1

Prσ1 ,σ2

ĜA,Q

(
♦G# ∪

{
v⊥1

})
∈ [a, b]

Prmin
A (♦G) ∈ [a, b]

.

Analogously, a composed PA A1 ‖ A2 can be over-approximated by its Menu-game
ĜA1‖A2,Q with respect to some partition Q of S1 × S2, i.e. these rules are correct too:

∀
σ2

sup
σ1

Prσ1 ,σ2

ĜA1‖A2,Q

(
♦G#

)
∈ [a, b]

Prmax
A1‖A2

(♦G) ∈ [a, b]
,

∀
σ2

inf
σ1

Prσ1 ,σ2

ĜA1‖A2,Q

(
♦G# ∪

{
v⊥1

})
∈ [a, b]

Prmin
A1‖A2

(♦G) ∈ [a, b]
.

However, the Menu-game ĜA1,S1 ‖ ĜA2,Q2 in our proposed assume-guarantee rules is

rather different from that. The crucial question is why ĜA1,S1 ‖ ĜA2,Q2 over-approximates
A1 ‖ A2 with respect to probabilistic reachability.

The answer is, as initially indicated, that ĜA1,S1 ‖ ĜA2,Q2 can simulate the Menu-game

ĜA1‖A2,S1×Q2
, of which we already know that it over-approximates A1 ‖ A2. Thus, the

crucial part is proving that

ĜA1‖A2,S1×Q2
is simulated by ĜA1,S1 ‖ ĜA2,Q2 .

107

6. Assume-guarantee Style Extension for Menu-games

The proof is rather tedious and thus not presented here but put in Section A of the
appendix.

Example 6.8. Consider the modular system from Example 6.3. Using the assume-
guarantee formalism, we can over-approximate the maximal probability of reaching an
error state in Aerr ‖ Anom by analysing the Menu-game ĜAerr ,Serr ‖ ĜAnom ,Qnom from
Example 6.6.

To this end, we let G = {t2} × Snom , since t2 is the error state of the error model.
Correspondingly, the abstract goal set is given by G# = {t2} ×Q2.

Figure 6.4 makes it easy to see that the bounds for maximal probabilistic reachability
of G# correspond to [0.03, 1.0]. Employing the respective assume-guarantee rule

∀
σ2

sup
σ1

Prσ1,σ2G1‖G2

(
♦G#

)
∈ [0.03, 1.0] G1 = ĜAerr ,Serr G2 = ĜAnom ,Qnom

PrmaxA1‖A2
(♦G) ∈ [0.03, 1.0]

yields that the maximal probabilistic reachability of G in Aerr ‖ Anom is bounded by
[0.03, 1.0], too. This makes sense since the actual probability is 0.0591.

108

7. Conclusion

7.1. Summary & Evaluation

In this thesis, we presented a fully symbolical variant of the (partially explicit) backward
refinement procedure proposed in [Wachter, 2011], which is a form of predicate abstrac-
tion for probabilistic programs featuring non-determinism. In particular, we proposed
optimisation techniques for both the abstraction and probabilistic reachability analysis.
Based on several case studies, we evaluated the impact of these optimisations on the
run time of our prototypical implementation and analysed the ratio of sub-procedures.

Our experiments indicate that the presented optimisations are crucial to make the
symbolical approach feasible. Especially the combination of relevant predicates and
expression decomposition turns out to be necessary for a fast and scalable abstraction
of more complex models.

Furthermore, we showed that an explicit value iteration will usually outperform a
symbolic approach if the explicit representation fits into memory. This is due to the
fact that the symbolical representation, unlike the explicit one, heavily depends on
the current valuation and is subject to change, but at the same time must be kept
reduced and ordered. However, experiments have shown that the symbolical approach
uses significantly less memory and may thus be able to verify models which are not
amenable to the explicit approach.

We found that for both the model construction and especially the value iteration,
MTBDD operations form the bottleneck of our approach. This was to be expected
though, as the cost of MTBDD operations grows with increasing irregularity of the
represented function but the MTBDDs during value iteration often become irregular
and many of these costly operations must be performed.

Since neither Menu-games nor the backward refinement procedure exploit the com-
posite nature of many models we also proposed an assume-guarantee style extension to
alleviate this shortcoming. Its proper study and integration into an automatic refine-
ment procedure is future work though.

Overall, we have found that (symbolical) backward refinement and the use of Menu-
games has a right to exist, as it is computationally simpler than game-based abstraction
but in contrast to other predicate abstraction techniques yields both lower and upper
bounds for probabilistic reachability properties. Also, especially for large models, the
state space of Menu-games turns out to be significantly smaller than its concrete coun-
terpart.

Lastly, bear in mind that although backward refinement can solve probabilistic reach-
ability for many infinite sized probabilistic models, it will not terminate for all in-

109

7. Conclusion

stances. For example, the classical Collatz-Conjecture has been proven to be algo-
rithmically undecidable [Conway, 1972]. Correspondingly, the backward refinement for
Prmin (♦ Jn = 1K) will never terminate for the following probabilistic program:

1 mdp

2
3 module collatz_on_int

4 n : int;

5 [a] n>0 & n mod 2 = 0 -> 1.0 :(n’=n/2);

6 [b] n>0 & n mod 2 = 1 -> 1.0 :(n’=3*n+1);

7 [inv] phase=1 & run<=0 -> 1.0 :(n’=-n+1);

8 endmodule

Listing 7.1: Collatz conjecture extended to Z

7.2. Future Work

In this section, we illustrate possible future work on extending our approach. First of
all, there are several rather obvious ways to improve the overall performance of the
prototype:

Topological Value Iteration The worst performing part of our symbolical approach is
clearly the value iteration. The bad scaling is largely attributed to our primitive
value iteration scheme which always updates the values of all vertices. Thus, a
more sophisticated approach like [Dai et al., 2011], exploiting the topology of the
game, may significantly improve its performance.

Parallelisation The computation of menu-based abstraction amounts to solving an ab-
stract transition constraint R#

c for every command c. However, these constraints
are independent, making their solution ideally suited for parallelisation. More-
over, one may consider using an MTBDD library like JINC [Ossowski, 2010],
which supports multi-threading, to handle the complexity of MTBDD operations
during value iteration.

Restrictive refinement predicates As mentioned in Section 5.3.4, the reference tool
Pass checks whether a chosen pivot block is actually reachable in the concrete
model. If such a block is spurious, Pass computes interpolants from a respective
path formula, which make this and similar blocks unreachable in follow up refine-
ment iterations. Such restrictive predicates may significantly affect the size of the
abstract state space and as a result improve both the value iteration performance
and the precision of obtained Menu-games.

Furthermore, aiming to avoid spurious blocks, it might be feasible to derive invariants
from statical analysis of a probabilistic program and use these to restrict the abstract
state space. The difficulty here is to make this work properly in combination with the

110

7.2. Future Work

relevant predicates optimisation, where irrelevant predicates are not considered by the
Smt-solver but always retain their values. Due to this, pushing the invariants on the
solver’s stack would often have no effect. However, it is not clear how to apply an
invariant to the constructed state space either.

Last but not least, is also remains to integrate our assume-guarantee extension into
an automatic refinement procedure and evaluate its feasibility.

111

Appendix

113

A. Assume-guarantee Proof

A. Assume-guarantee Proof

Our Assume-guarantee rule is based on the assumption that ĜA1‖A2,S1×Q2
can be sim-

ulated by ĜA1,S1 ‖ ĜA2,Q2 , i.e. there exists a relation R between the games’ vertices,
such that the initial vertices are related and for a pair (u, v) ∈ R, if there exists a
α-successor u′ of u, reachable with probability p, then there exists a α-successor v′ of v,
reachable with the same probability and (u′, v′) ∈ R. In the following we conveniently
write R (v, u) to denote (v, u) ∈ R.

Definition 7.1 (Simulation). Let

G1 =
(
V1,Act1,Opt1, U1, δ1, vinit ,1

)
(7.1)

G2 =
(
V2,Act2,Opt2, U2, δ2, vinit ,2

)
(7.2)

be Menu-games. We say that G2 simulates G1, denoted by G1 � G2, if there exists a
relation R such that

(
vinit ,1, vinit ,2

)
∈ R, and for two related vertices (v1, v2) ∈ R, with

v1 ∈ V1 and v2 ∈ V2, the following holds:

∀(v1,α,β1,µ1)∈δ1 ∃(v2,α,β2,µ2)∈δ2 ∀v′1∈V1 µ̂1(v
′
1) > 0⇒ ∃v′2∈V2 µ̂2(v

′
2) = µ̂1(v

′
1) ∧R

(
v′1, v

′
2

)
.

Let A1 = (S1,Act1, U1,P1, sinit ,1) and A2 = (S2,Act2, U2,P2, sinit ,2) be PA and Q2

a partition of S2. Furthermore, let G1 := ĜA1‖A2,S1×Q2
and G2 := ĜA1,S1 ‖ ĜA2,Q2 . We

refer to the vertices of Gi as Vi and their transition relations as δi.
We claim that

R :=

(v1, v2) ∈ V1 × V2

∣∣∣∣∣∣ v1 = v⊥1 ⇒ v2 ∈ S1 ×
{
v⊥1

}
v1 = (s1, B2)⇒ v2 = (s1, B2)

is a simulation relation, such that G1 � G2. The crucial difference between G1 and G2 is
that G1 has a single bottom state, while G2 has several composed bottom states, which
are related in R. The remaining entries of R relate identically identified vertices of both
games. Note that the initial vertex of both G1 and G2 is identified via

(
vinit ,1, vinit ,2

)
such that (vinit1, vinit2) ∈ R.

Proof. Let (v1, α, β1, µ1) ∈ δ1 and R (v1, v2). We show that there exists a corresponding
tuple (v2, α, β2, µ2) ∈ δ2 such that equally weighted vertices in the support of µ1 and µ2
are related. To this end we distinguish whether v1 is a trap vertex or not.

Case v1 = v⊥1 : By Definition 3.1, the distributions must be µ1 = vp1 = 1.0 : (uτ , v
′
1) with

v′1 = v⊥1 . Since R (v1, v2), we know that v2 = (s1, v
⊥
1) ∈ S1 ×

{
v⊥1
}

. Since trap
states do not enable conventional actions but use aτ they are not synchronised dur-
ing ĜA1,S1 ‖ ĜA2,Q2 and, as a result, there exists a tuple (v2, aτ , β2, 1.0 : (uτ , v

′
2)) ∈

δ2 with
(
s1, v

⊥
1

)
, such that (v′1, v

′
2) ∈ R.

115

Case v1 = (s1, B2): There are three ways for an action α to be enabled in v1. Either it
is the result of synchronisation over a shared action, i.e. α ∈ (Act1 ∪Act2) \ {aτ}
or a transition private to a subcomponent, i.e. α ∈ (Act1 \Act2) ∪ {aτ} or α ∈
(Act2 \Act1) ∪ {aτ}.

Case α shared: α must be enabled in both s1 and some state s2 ∈ B2.

Since R (v1, v2) we know that v2 = (s1, B2). Accordingly, there must be
a tuple (s1, α, β2,1, µ1,1) in the transition relation of ĜA1,S1 and a tuple

(B2, α, β2,2, µ1,2) in the transition relation of ĜA2,Q2 . Their parallel com-
position results in (v2, α, (β1, β2), µ2) with µ1 = µ2 = µ1,1 × µ1,2. Being the
same distributions they trivially lead to related successors (in R).

Case α private to A1: In this case, according to Definition 6.5, µ1 = µ1,1 × 1.0 :
(uτ , B2), because there is no s2 ∈ B2 such that α is enabled (not considering
aτ).

Since R (v1, v2) we know that v2 = (s1, B2). Accordingly, there must be
a tuple (s1, α, β2,1, µ1,1) in the transition relation of ĜA1,S1 but block B2 in

ĜA2,Q2 does not enable α. According to the definition of parallel composition,
this results in (v2, α, (β2,1, β2,1) , µ2) ∈ δ2 with µ2 = µ1. Being the same
distributions, their successors are in R.

Case α private to A2: In this case, according to Definition 6.5, we have µ1 =
1.0 : (uτ , s1)× µ1,2, because s1 does not enable α (not considering aτ).

Since R (v1, v2) we know that v2 = (s1, B2). Accordingly, there must be
a tuple (B2, α, β2,2, µ1,2) in the transition relation of ĜA2,Q2 but block s1 in

ĜA1,S1 does not enable α. According to the definition of parallel composition,
this results in (v2, α, (β2,2, β2,2) , µ2) ∈ δ2 with µ2 = µ1. Being the same
distributions, their successors are in R.

116

B. Raw Evaluation Data

B. Raw Evaluation Data

B.1. Crowds Protocol

Ref. Iteration Normal Range Relevant Decomp. Unrelated Reach

#0 5336 4717 3237 142 110 140
#1 9145 8925 5289 71 60 61
#2 14748 13605 8789 71 59 73
#3 19705 22739 11944 84 47 67
#4 36826 33465 16176
#5 53389 41349 22231
#6 822291 59784 38854
#7 138019 120123 49154

Table 7.1.: Time (in ms) spent on abstraction and construction

Time [ms] Vertex count

Ref. Iteration Smt BDD Reach other Player 1 Player 2 Prob.

#0 28 5 22 55 24516 24516 28269
#1 18 2 38 2 36773 36773 41039
#2 19 3 32 5 49030 49030 53809
#3 20 4 19 4 7238 7238 7471

Table 7.2.: Detailed breakdown of “Unrelated”

Ref. Iteration Normal Reuse Res. Goal Succ. Explicit

#0 1161 1181 1099 219
#1 2911 978 756 333
#2 3447 1316 1017 452
#3 666 710 685 225

Table 7.3.: Time (in ms) spent on analysis

Time [ms]

Ref. Iteration Prob0/1 VI

#0 60 159
#1 86 247
#2 118 334
#3 146 106

Table 7.4.: Detailed breakdown of “Explicit”

117

B.2. Randomised Consensus Shared Coin Protocol

Ref. Iteration Normal Range Relevant Decomp. Unrelated Reach

#0 1101 648 568 174 125 148
#1 1211 713 582 102 60 97
#2 1359 673 486 70 68 70
#3 1738 847 567 82 72 75
#4 2323 970 661 86 81 85
#5 2497 1379 791 94 85 90
#6 2873 1563 936
#7 3243 1986 996
#8 3426 2016 1100
#9 3918 2342 1151

Table 7.5.: Time (in ms) spent on abstraction and construction

Time [ms] Vertex count

Ref. Iteration Smt BDD Reach other Player 1 Player 2 Prob.

#0 56 16 5 48 112 160 224
#1 36 7 8 9 144 208 272
#2 40 8 10 10 176 256 320
#3 43 9 11 9 208 304 344
#4 48 11 13 9 240 352 392
#5 51 14 11 9 272 400 416

Table 7.6.: Detailed breakdown of “Unrelated”

Ref. Iteration Normal Reuse Res. Goal Succ. Explicit

#0 46 47 51 53
#1 88 89 95 82
#2 158 157 172 105
#3 317 339 371 146
#4 446 455 506 182
#5 744 1276 1352 242

Table 7.7.: Time (in ms) spent on analysis

118

B. Raw Evaluation Data

Time [ms]

Ref. Iteration Prob0/1 VI

#0 36 17
#1 57 25
#2 71 34
#3 93 53
#4 129 53
#5 178 64

Table 7.8.: Detailed breakdown of “Explicit”

B.3. Asynchronous Leader Election Protocol

Ref. Iteration Decomp. Unrelated Reach

#0 2563 2083 2466
#1 1501 830 1245
#2 1688 926 1180
#3 1909 890 1127
#4 2007 890 1092

Table 7.9.: Time (in ms) spent on abstraction and construction

Time [ms] Vertex count

Ref. Iteration Smt BDD Reach other Player 1 Player 2 Prob.

#0 869 460 240 514 3340 6460 6548
#1 351 297 160 22 3298 6408 6474
#2 404 207 260 55 3256 6356 6400
#3 411 210 227 42 3214 6304 6326
#4 455 233 180 22 3172 6252 6252

Table 7.10.: Detailed breakdown of “Unrelated”

Ref. Iteration Normal Reuse Res. Goal Succ. Explicit

#0 4565 4582 4752 3781
#1 1390 1449 1724 3845
#2 28369 28433 26884 5156
#3 17700 25241 25437 5927
#4 1398 1536 1826 3562

Table 7.11.: Time (in ms) spent on analysis

119

Time [ms]

Ref. Iteration Prob0/1 VI

#0 1015 2766
#1 1279 2566
#2 2109 3047
#3 2383 3544
#4 990 2572

Table 7.12.: Detailed breakdown of “Explicit”

B.4. Wireless LAN Protocol

Ref. Iteration Decomp. Unrelated Reach

#0 9134 5521 6027
#1 8946 641 1038
#2 13429 587 1186
#3 4561 622 935
#4 4622 688 950
#5 4870 652 991
#6 4620 681 983
#7 4908 694 1000
#8 5111 715 1013
#9 5216 640 1023
#10 4978 785 1034
#11 5253 681 1044
#12 5305 776 1082
#13 5550 698 1123
#14 5526 837 1111
#15 5759 757 1116
#16 5676 785 1103
#17 5719 819 1114
#18 6038 844 1142
#19 6033 833 1173
#20 6344 958 1175
#21 6547 867 1149
#22 6689 876 1261
#23 6806 895 1274
#24 6623 923 1271
#25 6937 930 1341
#26 6819 1029 1355
#27 7151 1130 1374
#28 7001 1125 1391
#29 7616 1159 1406

Table 7.13.: Time (in ms) spent on abstraction and construction

120

B. Raw Evaluation Data

Time [ms] Vertex count

Ref. Iteration Smt BDD Reach other Player 1 Player 2 Prob.

#0 2809 1505 383 824 1055 1497 1607
#1 16 357 230 38 1175 1655 1771
#2 30 362 180 15 1295 1813 1935
#3 35 368 210 9 1415 1971 2099
#4 41 379 240 28 1535 2129 2263
#5 46 229 318 59 1655 2287 2427
#6 53 239 316 73 1775 2445 2591
#7 59 270 338 27 1895 2603 2755
#8 67 268 363 17 2014 2761 2919
#9 76 257 289 18 2135 2919 3083
#10 75 464 224 22 2255 3077 3247
#11 92 324 220 45 2375 3235 3411
#12 101 378 235 62 2495 3393 3575
#13 102 334 227 35 2615 3551 3739
#14 121 412 257 47 2685 3647 3806
#15 26 385 303 43 2917 3945 4106
#16 30 431 302 22 3149 4243 4406
#17 35 430 322 32 3381 4541 4706
#18 41 428 360 15 3613 4839 5006
#19 47 438 329 19 3845 5137 5306
#20 54 448 364 92 4077 5435 5606
#21 60 453 332 22 4309 5733 5906
#22 68 456 325 27 4541 6031 6206
#23 75 476 329 15 4773 6329 6506
#24 84 476 339 24 5005 6627 6806
#25 92 493 331 14 5237 6925 7106
#26 65 492 448 24 7771 10277 10537
#27 102 528 427 73 8118 10723 10986
#28 111 535 431 48 8465 11169 11435
#29 120 537 442 60 8737 11522 11655

Table 7.14.: Detailed breakdown of “Unrelated”

121

Ref. Iteration Normal Reuse Res. Goal Succ. Explicit

#0 1358 1449 1375 1036
#1 1773 1851 1712 1394
#2 897 1238 1055 838
#3 987 1221 1124 897
#4 1022 1340 1059 830
#5 934 1186 1030 825
#6 1061 1316 1220 895
#7 1129 1416 1202 873
#8 1168 1466 1174 837
#9 1264 1650 1322 912
#10 1341 1522 1176 920
#11 1451 1647 1311 928
#12 1400 1728 1448 934
#13 1515 1828 1488 937
#14 1590 1937 1572 927
#15 1725 2061 1651 962
#16 1417 1714 1370 921
#17 1423 1657 1388 942
#18 1447 2033 1428 968
#19 1488 1934 1470 962
#20 1500 1727 1488 955
#21 1616 2028 1510 983
#22 1558 1962 1504 1018
#23 1573 1781 1536 975
#24 1746 2253 1579 976
#25 1761 1914 1716 1012
#26 1987 2156 1804 1049
#27 2173 1759 1611 1037
#28 2274 1837 1485 1063
#29 2767 2627 2544 1105

Table 7.15.: Time (in ms) spent on analysis

122

B. Raw Evaluation Data

Time [ms]

Ref. Iteration Prob0/1 VI

#0 896 140
#1 802 592
#2 628 210
#3 642 255
#4 435 395
#5 503 322
#6 545 350
#7 596 277
#8 609 228
#9 648 264
#10 694 226
#11 727 201
#12 720 214
#13 708 229
#14 772 155
#15 760 202
#16 739 182
#17 748 194
#18 723 245
#19 776 186
#20 767 188
#21 753 230
#22 743 275
#23 735 240
#24 773 203
#25 712 300
#26 746 303
#27 790 247
#28 815 248
#29 818 287

Table 7.16.: Detailed breakdown of “Explicit”

B.5. Memory Usage

Procedure

Case Study Symbolic Explicit Smt-part

Crowds 57 90 22
Consensus 65 74 32

Leader 452 645 321
WLAN 624 842 518

Table 7.17.: Peak memory usage (in MB) of complete procedure

123

B.6. Storm vs. Pass

Case Study Symbolic Explicit Pass

Crowds 8461 1532 1842
Consensus 2290 1301 14891

Leader 59041 27890 20416
WLAN 74493 58059 9885

Table 7.18.: Time (in ms) spent on complete procedure

C. Case Studies and Properties

C.1. Crowds Protocol

Property

Prmin (♦ Jobserve0 > 1K) .

Prism model

1 mdp

2
3 // probability of forwarding

4 const double PF = 0.8 ;

5 const double notPF = .2 ; // must be 1-PF

6 // probability that a crowd member is bad

7 const double badC = .1 67;

8 // probability that a crowd member is good

9 const double goodC = 0.8 33;

10 // Total number of protocol runs to analyze

11 const int TotalRuns = 5;

12 // size of the crowd

13 const int CrowdSize = 5;

14
15 module crowds

16 // protocol phase

17 phase: [0 ..4] init 0;

18
19 // crowd member good (or bad)

20 good: bool init false;

21
22 // number of protocol runs

23 runCount: [0 .. TotalRuns] init 0;

24
25 // observe_i is the number of times

26 // the attacker observed crowd member i

27 observe0: [0.. TotalRuns] init 0;

28 observe1: [0.. TotalRuns] init 0;

29 observe2: [0.. TotalRuns] init 0;

124

C. Case Studies and Properties

30 observe3: [0.. TotalRuns] init 0;

31 observe4: [0.. TotalRuns] init 0;

32
33 // the last seen crowd member

34 lastSeen: [0 .. CrowdSize - 1] init 0;

35
36 // get the protocol started

37 [] phase=0 & runCount<TotalRuns -> 1: (phase ’=1)

38 & (runCount ’=runCount+1)

39 & (lastSeen ’=0);

40
41 // decide whether crowd member is good or bad

42 [] phase=1 -> goodC : (phase ’=2) & (good ’=true)

43 + badC : (phase ’=2) & (good ’=false);

44
45 // if the current member is a good member ,

46 // update the last seen index (chosen uniformly)

47 [] phase=2 & good -> 1/5 : (lastSeen ’=0) & (phase ’=3)

48 + 1/5 : (lastSeen ’=1) & (phase ’=3)

49 + 1/5 : (lastSeen ’=2) & (phase ’=3)

50 + 1/5 : (lastSeen ’=3) & (phase ’=3)

51 + 1/5 : (lastSeen ’=4) & (phase ’=3);

52
53 // if the current member is a bad member ,

54 // record the most recently seen index

55 [] phase=2 & !good & lastSeen=0 & observe0 < TotalRuns

56 -> 1: (observe0’=observe0+1) & (phase ’=4);

57 [] phase=2 & !good & lastSeen=1 & observe1 < TotalRuns

58 -> 1: (observe1’=observe1+1) & (phase ’=4);

59 [] phase=2 & !good & lastSeen=2 & observe2 < TotalRuns

60 -> 1: (observe2’=observe2+1) & (phase ’=4);

61 [] phase=2 & !good & lastSeen=3 & observe3 < TotalRuns

62 -> 1: (observe3’=observe3+1) & (phase ’=4);

63 [] phase=2 & !good & lastSeen=4 & observe4 < TotalRuns

64 -> 1: (observe4’=observe4+1) & (phase ’=4);

65
66 // good crowd members forward with probability PF; deliver otherwise

67 [] phase=3 -> PF : (phase ’=1) + notPF : (phase ’=4);

68
69 // deliver the message and start over

70 [] phase=4 -> 1: (phase ’=0);

71 endmodule

Listing 7.2: Crowds Protocol

C.2. Randomised Consensus Shared Coin Protocol

Property

Prmin (♦ Jfinished ∧ allCoinsEqual1 K) ,

125

where

finished := pc1 = 3 ∧ pc2 = 3

allCoinsEqual1 := coin1 = 1 ∧ coin2 = 1.

Prism model

1 mdp

2
3 // constants

4 const int N=2;

5 const int K;

6 const int range = 2*(K+1)*N;

7 const int counter_init = (K+1)*N;

8 const int left = N;

9 const int right = 2*(K+1)*N - N;

10
11 // shared coin

12 global counter : [0 .. range] init counter_init;

13
14 module process1

15 // program counter

16 // 0 = flip , 1 = write , 2 = check , 3 = finished

17 pc1 : [0.. 3];

18
19 // local coin

20 coin1 : [0 ..1];

21
22 // flip coin

23 [] (pc1=0) -> 0.5 : (coin1’=0) & (pc1’=1)

24 + 0.5 : (coin1’=1) & (pc1’=1);

25 // write tails -1 (reset coin to add regularity)

26 [] (pc1=1) & (coin1=0) & (counter>0)

27 -> 1 : (counter ’=counter-1) & (pc1’=2) & (coin1’=0);

28 // write heads +1 (reset coin to add regularity)

29 [] (pc1=1) & (coin1=1) & (counter<range)

30 -> 1 : (counter ’=counter+1) & (pc1’=2) & (coin1’=0);

31
32 // decide tails

33 [] (pc1=2) & (counter<=left) -> 1 : (pc1’=3) & (coin1’=0);

34 // decide heads

35 [] (pc1=2) & (counter>=right) -> 1 : (pc1’=3) & (coin1’=1);

36 // flip again

37 [] (pc1=2) & (counter>left) & (counter<right) -> 1 : (pc1’=0);

38 // loop (all loop together when done)

39 [done] (pc1=3) -> 1 : (pc1’=3);

40 endmodule

41
42 // construct remaining processes through renaming

43 module process2 = process1[pc1=pc2,coin1=coin2] endmodule

Listing 7.3: Consensus Protocol

126

C. Case Studies and Properties

C.3. Asynchronous Leader Election Protocol

Property

Prmin (♦ JelectedK) ,

where
s1 = 4 ∨ s2 = 4 ∨ s3 = 4 ∨ s4 = 4.

Prism model

1 mdp

2
3 const int N = 4; // number of processes

4 module process1

5 // COUNTER

6 c1 : [0.. 4-1];

7
8 // STATES

9 // 0 = make choice , 1 = have not received neighbours choice ,

10 // 2 = active , 3 = inactive , 4 = leader

11 s1 : [0.. 4];

12
13 // PREFERENCE

14 p1 : [0.. 1];

15
16 // VARIABLES FOR SENDING AND RECEIVING

17 receive1 : [0.. 2];

18 sent1 : [0.. 2];

19
20 // pick value

21 [] (s1=0) -> 0.5 : (s1’=1) & (p1’=0) + 0.5 : (s1’=1) & (p1’=1);

22
23 // send preference

24 [p12] (s1=1) & (sent1=0) -> (sent1’=1);

25 // receive preference

26 // stay active

27 [p41] (s1=1) & (receive1=0) & !((p1=0) & (p4=1))

28 -> (s1’=2) & (receive1’=1);

29 // become inactive

30 [p41] (s1=1) & (receive1=0) & (p1=0) & (p4=1)

31 -> (s1’=3) & (receive1’=1);

32
33 // send preference (can now reset preference)

34 [p12] (s1=2) & (sent1=0) -> (sent1’=1) & (p1’=0);

35 // send counter (already sent preference)

36 // not received counter yet

37 [c12] (s1=2) & (sent1=1) & (receive1=1) -> (sent1’=2);

38 // received counter (pick again)

39 [c12] (s1=2) & (sent1=1) & (receive1=2)

40 -> (s1’=0) & (p1’=0) & (c1’=0) & (sent1’=0) & (receive1’=0);

41
42 // receive counter and not sent yet

127

43 [c41] (s1=2) & (receive1=1) & (sent1<2) -> (receive1’=2);

44 // receive counter and sent counter

45 // only active process (decide)

46 [c41] (s1=2) & (receive1=1) & (sent1=2) & (c4=N-1)

47 -> (s1’=4) & (p1’=0) & (c1’=0) & (sent1’=0) & (receive1’=0);

48 // other active process (pick again)

49 [c41] (s1=2) & (receive1=1) & (sent1=2) & (c4<N-1)

50 -> (s1’=0) & (p1’=0) & (c1’=0) & (sent1’=0) & (receive1’=0);

51
52 // send preference (must have received preference) and can now reset

53 [p12] (s1=3) & (receive1>0) & (sent1=0) -> (sent1’=1) & (p1’=0);

54 // send counter (must have received counter first) and can now reset

55 [c12] (s1=3) & (receive1=2) & (sent1=1)

56 -> (s1’=3) & (p1’=0) & (c1’=0) & (sent1’=0) & (receive1’=0);

57
58 // receive preference

59 [p41] (s1=3) & (receive1=0) -> (p1’=p4) & (receive1’=1);

60 // receive counter

61 [c41] (s1=3) & (receive1=1) & (c4<N-1) -> (c1’=c4+1) & (receive1’=2);

62
63 // done

64 [done] (s1=4) -> (s1’=s1);

65 // add loop for processes who are inactive

66 [done] (s1=3) -> (s1’=s1);

67 endmodule

68
69 // construct further stations through renaming

70 module process2=process1[s1=s2,p1=p2,c1=c2,sent1=sent2,receive1=receive2,

71 p12=p23,p41=p12,c12=c23,c41=c12,p4=p1,c4=c1]

72 endmodule

73 module process3=process1[s1=s3,p1=p3,c1=c3,sent1=sent3,receive1=receive3,

74 p12=p34,p41=p23,c12=c34,c41=c23,p4=p2,c4=c2]

75 endmodule

76 module process4=process1[s1=s4,p1=p4,c1=c4,sent1=sent4,receive1=receive4,

77 p12=p41,p41=p34,c12=c41,c41=c34,p4=p3,c4=c3]

78 endmodule

Listing 7.4: Leader Election Protocol

C.4. Wireless LAN Protocol

Property

Prmax (♦ Jcol = 2K) .

Prism model

1 mdp

2
3 // COLLISIONS

4 const int COL = 2; // maximum number of collisions

128

C. Case Studies and Properties

5
6 // TIMING CONSTRAINTS

7 const int ASLOTTIME = 1;

8 const int DIFS = 3;

9 const int VULN = 1;

10 const int TRANS_TIME_MAX; // scaling up

11 const int TRANS_TIME_MIN = 4; // scaling down

12 const int ACK_TO = 6;

13 const int ACK = 4;

14 const int SIFS = 1;

15 // maximum constant used in timing constraints + 1

16 const int TIME_MAX = max(ACK_TO ,TRANS_TIME_MAX)+1;

17
18 // CONTENTION WINDOW

19 // CWMIN =15 & CWMAX =16

20 // this means that MAX_BACKOFF IS 2

21 const int MAX_BACKOFF = 0;

22
23 // THE MEDIUM/CHANNEL

24 // FORMULAE FOR THE CHANNEL

25 // channel is busy

26 formula busy = c1>0 | c2>0;

27 // channel is free

28 formula free = c1=0 & c2=0;

29
30 module medium

31 // number of collisions

32 col : [0.. COL];

33
34 // medium status

35 c1 : [0.. 2];

36 c2 : [0.. 2];

37 // ci = message associated with station i

38 // 0 = nothing being sent , 1 = being sent correctly ,

39 // 2 = being sent garbled

40
41 // begin sending message and nothing else currently being sent

42 [send1] c1=0 & c2=0 -> (c1’=1);

43 [send2] c2=0 & c1=0 -> (c2’=1);

44
45 // begin sending message and something is already being sent

46 // in this case both messages become garbled

47 [send1] c1=0 & c2>0 -> (c1’=2) & (c2’=2) & (col ’=min(col+1,COL));

48 [send2] c2=0 & c1>0 -> (c1’=2) & (c2’=2) & (col ’=min(col+1,COL));

49
50 // finish sending message

51 [finish1] c1>0 -> (c1’=0);

52 [finish2] c2>0 -> (c2’=0);

53 endmodule

54
55 module station1

56 // clock for station 1

57 x1 : [0.. TIME_MAX];

129

58
59 // local state

60 s1 : [1.. 12];

61 // 1 = sense , 2 = wait until free before setting backoff ,

62 // 3 = wait for DIFS then set slot , 4 = set backoff , 5 = backoff ,

63 // 6 = wait until free in backoff ,

64 // 7 = wait for DIFS then resume backoff , 8 = vulnerable ,

65 // 9 = transmit , 10 = wait for ACT_TO ,

66 // 11 = wait for SIFS and then ACK , 12 = done

67
68 // BACKOFF (separated into slots)

69 slot1 : [0 ..1];

70 backoff1 : [0.. 15];

71
72 // BACKOFF COUNTER

73 bc1 : [0.. 1];

74
75 // SENSE

76 // let time pass

77 [time] s1=1 & x1<DIFS & free -> (x1’=min(x1+1,TIME_MAX));

78 // ready to transmit

79 [] s1=1 & (x1=DIFS | x1=DIFS-1) -> (s1’=8) & (x1’=0);

80 // found channel busy so wait until free

81 [] s1=1 & busy -> (s1’=2) & (x1’=0);

82
83 // WAIT UNTIL FREE BEFORE SETTING BACKOFF

84 // let time pass (no need for the clock x1 to change)

85 [time] s1=2 & busy -> (s1’=2);

86 // find that channel is free

87 // so check its free for DIFS before setting backoff

88 [] s1=2 & free -> (s1’=3);

89
90 // WAIT FOR DIFS THEN SET BACKOFF

91 // let time pass

92 [time] s1=3 & x1<DIFS & free -> (x1’=min(x1+1,TIME_MAX));

93 // found channel busy so wait until free

94 [] s1=3 & busy -> (s1’=2) & (x1’=0);

95 // start backoff first uniformly choose slot

96 // backoff counter 0

97 [] s1=3 & (x1=DIFS | x1=DIFS-1) & bc1=0

98 -> (s1’=4) & (x1’=0) & (slot1’=0) & (bc1’=min(bc1+1,MAX_BACKOFF));

99
100 // SET BACKOFF (no time can pass)

101 // chosen slot now set backoff

102 [] s1=4 -> 1/16 : (s1’=5) & (backoff1’=0)

103 + 1/16 : (s1’=5) & (backoff1’=1)

104 + 1/16 : (s1’=5) & (backoff1’=2)

105 + 1/16 : (s1’=5) & (backoff1’=3)

106 + 1/16 : (s1’=5) & (backoff1’=4)

107 + 1/16 : (s1’=5) & (backoff1’=5)

108 + 1/16 : (s1’=5) & (backoff1’=6)

109 + 1/16 : (s1’=5) & (backoff1’=7)

110 + 1/16 : (s1’=5) & (backoff1’=8)

130

C. Case Studies and Properties

111 + 1/16 : (s1’=5) & (backoff1’=9)

112 + 1/16 : (s1’=5) & (backoff1’=10)

113 + 1/16 : (s1’=5) & (backoff1’=11)

114 + 1/16 : (s1’=5) & (backoff1’=12)

115 + 1/16 : (s1’=5) & (backoff1’=13)

116 + 1/16 : (s1’=5) & (backoff1’=14)

117 + 1/16 : (s1’=5) & (backoff1’=15);

118 // BACKOFF

119 // let time pass

120 [time] s1=5 & x1<ASLOTTIME & free -> (x1’=min(x1+1,TIME_MAX));

121 // decrement backoff

122 [] s1=5 & x1=ASLOTTIME & backoff1>0

123 -> (s1’=5) & (x1’=0) & (backoff1’=backoff1-1);

124 [] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1>0

125 -> (s1’=5) & (x1’=0) & (backoff1’=15) & (slot1’=slot1-1);

126 // finish backoff

127 [] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1=0

128 -> (s1’=8) & (x1’=0);

129 // found channel busy

130 [] s1=5 & busy -> (s1’=6) & (x1’=0);

131
132 // WAIT UNTIL FREE IN BACKOFF

133 // let time pass (no need for the clock x1 to change)

134 [time] s1=6 & busy -> (s1’=6);

135 // find that channel is free

136 [] s1=6 & free -> (s1’=7);

137
138 // WAIT FOR DIFS THEN RESUME BACKOFF

139 // let time pass

140 [time] s1=7 & x1<DIFS & free -> (x1’=min(x1+1,TIME_MAX));

141 // resume backoff (start again from previous backoff)

142 [] s1=7 & (x1=DIFS | x1=DIFS-1) -> (s1’=5) & (x1’=0);

143 // found channel busy

144 [] s1=7 & busy -> (s1’=6) & (x1’=0);

145
146 // VULNERABLE

147 // let time pass

148 [time] s1=8 & x1<VULN -> (x1’=min(x1+1,TIME_MAX));

149 // move to transmit

150 [send1] s1=8 & (x1=VULN | x1=VULN-1) -> (s1’=9) & (x1’=0);

151
152 // TRANSMIT

153 // let time pass

154 [time] s1=9 & x1<TRANS_TIME_MAX -> (x1’=min(x1+1,TIME_MAX));

155 // finish transmission successful

156 [finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=1 -> (s1’=10) & (x1’=0);

157 // finish transmission garbled

158 [finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=2 -> (s1’=11) & (x1’=0);

159 // WAIT FOR SIFS THEN WAIT FOR ACK

160
161 // WAIT FOR SIFS i.e. c1=0

162 // check channel and busy: go into backoff

163 [] s1=10 & c1=0 & x1=0 & busy -> (s1’=2);

131

164 // check channel and free: let time pass

165 [time] s1=10 & c1=0 & x1=0 & free -> (x1’=min(x1+1,TIME_MAX));

166 // let time pass

167 // following guard is always false as SIFS=1

168 // [time] s1=10 & c1=0 & x1 >0 & x1<SIFS -> (x1 ’=min(x1+1,TIME_MAX));

169 // ack is sent after SIFS

170 [send1] s1=10 & c1=0 & (x1=SIFS | (x1=SIFS-1 & free))

171 -> (s1’=10) & (x1’=0);

172
173 // WAIT FOR ACK i.e. c1=1

174 // let time pass

175 [time] s1=10 & c1=1 & x1<ACK -> (x1’=min(x1+1,TIME_MAX));

176 // get acknowledgement so packet sent correctly and move to done

177 [finish1] s1=10 & c1=1 & (x1=ACK | x1=ACK-1)

178 -> (s1’=12) & (x1’=0) & (bc1’=0);

179
180 // WAIT FOR ACK_TO

181 // check channel and busy: go into backoff

182 [] s1=11 & x1=0 & busy -> (s1’=2);

183 // check channel and free: let time pass

184 [time] s1=11 & x1=0 & free -> (x1’=min(x1+1,TIME_MAX));

185 // let time pass

186 [time] s1=11 & x1>0 & x1<ACK_TO -> (x1’=min(x1+1,TIME_MAX));

187 // no acknowledgement (go to backoff waiting DIFS first)

188 [] s1=11 & x1=ACK_TO -> (s1’=3) & (x1’=0);

189
190 // DONE

191 [time] s1=12 -> (s1’=12);

192 endmodule

193
194 // STATION 2 (rename STATION 1)

195 module station2=station1[x1=x2, s1=s2, s2=s1, c1=c2, c2=c1,

196 slot1=slot2, backoff1=backoff2,

197 bc1=bc2, send1=send2, finish1=finish2]

198 endmodule

Listing 7.5: WLAN Protocol

132

Bibliography

[Alur and Henzinger, 1999] Alur, R. and Henzinger, T. (1999). Reactive Modules. For-
mal Methods in System Design, 15(1):7–48.

[Aspnes and Herlihy, 1990] Aspnes, J. and Herlihy, M. (1990). Fast Randomized Con-
sensus Using Shared Memory. Journal of Algorithms, 15(1):441–460.

[Bahar et al., 1997] Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii,
E., Pardo, A., and Somenzi, F. (1997). Algebraic decision diagrams and their appli-
cations. Formal Methods in System Design, 10(2/3):171–206.

[Baier and Katoen, 2008] Baier, C. and Katoen, J.-P. (2008). Principles of Model
Checking. The MIT Press.

[Ball and Rajamani, 2002] Ball, T. and Rajamani, S. K. (2002). The SLAM Project:
Debugging System Software via Static Analysis. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’02,
pages 1–3, New York, NY, USA. ACM.

[Biere et al., 1999] Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y. (1999). Symbolic
Model Checking Without BDDs. In Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99, pages
193–207, London, UK, UK. Springer-Verlag.

[Bryant, 1986] Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Trans. Comput., 35(8):677–691.

[Clarke et al., 2001] Clarke, E., Biere, A., Raimi, R., and Zhu, Y. (2001). Bounded
Model Checking Using Satisfiability Solving. Form. Methods Syst. Des., 19(1):7–34.

[Clarke and Emerson, 1982] Clarke, E. M. and Emerson, E. A. (1982). Design and
Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic. In
Logic of Programs, Workshop, pages 52–71, London, UK, UK. Springer-Verlag.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic
Verification of Finite-state Concurrent Systems Using Temporal Logic Specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263.

[Condon, 1992] Condon, A. (1992). The Complexity of Stochastic Games. Information
and Computation, 96:203–224.

133

Bibliography

[Conway, 1972] Conway, J. H. (1972). Unpredictable Iterations. In Proceedings of the
1972 Number Theory Conference, pages 49–52. University of Colorado, Boulder.

[Cook, 1971] Cook, S. A. (1971). The Complexity of Theorem-proving Procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC
’71, pages 151–158, New York, NY, USA. ACM.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages 238–252, New York, NY,
USA. ACM.

[Cousot and Cousot, 1979] Cousot, P. and Cousot, R. (1979). Systematic Design of
Program Analysis Frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’79, pages 269–282, New
York, NY, USA. ACM.

[Cousot and Cousot, 1992] Cousot, P. and Cousot, R. (1992). Abstract Interpretation
and Application to Logic Programs. J. Log. Program., 13(2&3):103–179.

[Dai et al., 2011] Dai, P., , M., Weld, D. S., and Goldsmith, J. (2011). Topological
Value Iteration Algorithms. J. Artif. Int. Res., 42(1):181–209.

[de Moura and Bjørner, 2008] de Moura, L. M. and Bjørner, N. (2008). Z3: An Efficient
SMT Solver. In TACAS, pages 337–340.

[Dijkstra, 1976] Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall.

[Fujita et al., 1997] Fujita, M., McGeer, P. C., and Yang, J. C.-Y. (1997). Multi-
Terminal Binary Decision Diagrams: An Efficient DataStructure for Matrix Rep-
resentation. Form. Methods Syst. Des., 10(2-3):149–169.

[Ganzinger et al., 2004] Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., and
Tinelli, C. (2004). DPLL(T): Fast Decision Procedures. In CAV, pages 175–188.

[Graf and Säıdi, 1997] Graf, S. and Säıdi, H. (1997). Construction of Abstract State
Graphs with PVS. In Proceedings of the 9th International Conference on Computer
Aided Verification, CAV ’97, pages 72–83, London, UK, UK. Springer-Verlag.

[Hansson and Jonsson, 1994] Hansson, H. and Jonsson, B. (1994). A Logic for Reason-
ing about Time and Reliability. Formal Aspects of Computing, 6(5):512–535.

[Hermanns et al., 2008] Hermanns, H., Wachter, B., and Zhang, L. (2008). Probabilistic
CEGAR. In CAV, pages 162–175.

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

134

Bibliography

[Itai and Rodeh, 1990] Itai, A. and Rodeh, M. (1990). Symmetry Breaking in Dis-
tributed Networks. Information and Computation, 88(1).

[Katoen et al., 2010] Katoen, J.-P., van de Pol, J., Stoelinga, M., and Timmer, M.
(2010). A Linear Process-Algebraic Format for Probabilistic Systems with Data. In
Gomes, L., Khomenko, V., and Fernandes, J. M., editors, ACSD, pages 213–222.
IEEE Computer Society.

[Katoen et al., 2009] Katoen, J.-P., Zapreev, I. S., Hahn, E. M., Hermanns, H., and
Jansen, D. N. (2009). The Ins and Outs of the Probabilistic Model Checker MRMC.
In Proceedings of the 2009 Sixth International Conference on the Quantitative Evalu-
ation of Systems, QEST ’09, pages 167–176, Washington, DC, USA. IEEE Computer
Society.

[Kattenbelt et al., 2010] Kattenbelt, M., Kwiatkowska, M., Norman, G., and Parker,
D. (2010). A Game-based Abstraction-Refinement Framework for Markov Decision
Processes. Formal Methods in System Design, 36(3):246–280.

[Kattenbelt et al., 2008] Kattenbelt, M., Kwiatkowska, M. Z., Norman, G., and Parker,
D. (2008). Game-Based Probabilistic Predicate Abstraction in PRISM. Electr. Notes
Theor. Comput. Sci., 220(3):5–21.

[Knuth and Yao, 1976] Knuth, D. and Yao, A. (1976). Algorithms and Complexity:
New Directions and Recent Results, chapter The complexity of nonuniform random
number generation. Academic Press.

[Komuravelli et al., 2012] Komuravelli, A., Păsăreanu, C. S., and Clarke, E. M. (2012).
Assume-guarantee Abstraction Refinement for Probabilistic Systems. In Proceedings
of the 24th International Conference on Computer Aided Verification, CAV’12, pages
310–326, Berlin, Heidelberg. Springer-Verlag.

[Kwiatkowska et al., 2011] Kwiatkowska, M., Norman, G., and Parker, D. (2011).
PRISM 4.0: Verification of Probabilistic Real-time Systems. In Gopalakrishnan,
G. and Qadeer, S., editors, Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer.

[Kwiatkowska et al., 2010] Kwiatkowska, M., Norman, G., Parker, D., and Qu, H.
(2010). Assume-Guarantee Verification for Probabilistic Systems. In Esparza, J.
and Majumdar, R., editors, Proc. 16th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’10), volume 6105 of
LNCS, pages 23–37. Springer.

[Kwiatkowska et al., 2002] Kwiatkowska, M., Norman, G., and Sproston, J. (2002).
Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Proto-
col. In Hermanns, H. and Segala, R., editors, Proc. 2nd Joint International Workshop
on Process Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV’02), volume 2399 of LNCS, pages 169–187. Springer.

135

Bibliography

[Kwiatkowska et al., 2006] Kwiatkowska, M. Z., Norman, G., and Parker, D. (2006).
Game-based Abstraction for Markov Decision Processes. In QEST, pages 157–166.

[Lacan et al., 1998] Lacan, P., Monfort, J. N., Ribal, L. V. Q., Deutsch, A., and
Gonthier, G. (1998). ARIANE 5 - The Software Reliability Verification Process.
In Kaldeich-Schürmann, B., editor, DASIA 98 - Data Systems in Aerospace, volume
422 of ESA Special Publication.

[Lahiri et al., 2007] Lahiri, S. K., Ball, T., and Cook, B. (2007). Predicate Abstraction
via Symbolic Decision Procedures. Logical Methods in Computer Science, 3(2).

[McMillan, 2005] McMillan, K. L. (2005). Applications of Craig Interpolation to Model
Checking. In ICATPN, pages 15–16.

[Minato, 1993] Minato, S.-i. (1993). Zero-suppressed BDDs for Set Manipulation in
Combinatorial Problems. In Proceedings of the 30th International Design Automation
Conference, DAC ’93, pages 272–277, New York, NY, USA. ACM.

[Ossowski, 2010] Ossowski, J. (2010). JINC: a multi-threaded library for higher-order
weighted decision diagram manipulation. PhD thesis, University of Bonn.

[Parker, 2002] Parker, D. (2002). Implementation of Symbolic Model Checking for Prob-
abilistic Systems. PhD thesis, University of Birmingham.

[Pnueli, 1985] Pnueli, A. (1985). In Transition from Global to Modular Temporal Rea-
soning About Programs. In Apt, K. R., editor, Logics and Models of Concurrent
Systems, pages 123–144. Springer-Verlag New York, Inc., New York, NY, USA.

[Queille and Sifakis, 1982] Queille, J. and Sifakis, J. (1982). Specification and verifica-
tion of concurrent systems in CESAR. In Dezani-Ciancaglini, M. and Montanari, U.,
editors, International Symposium on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337–351. Springer Berlin Heidelberg.

[Rabin, 1963] Rabin, M. O. (1963). Probabilistic Automata. Information and Control,
6(3):230–245.

[Reiter and Rubin, 1998] Reiter, M. K. and Rubin, A. D. (1998). Crowds: Anonymity
for Web Transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–92.

[Roscoe et al., 1997] Roscoe, A. W., Hoare, C. A. R., and Bird, R. (1997). The Theory
and Practice of Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[Rutten et al., 2004] Rutten, J., Kwiatkowska, M., Norman, G., and Parker, D. (2004).
Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems, P.
Panangaden and F. van Breugel (eds.), volume 23 of CRM Monograph Series. Amer-
ican Mathematical Society.

136

Bibliography

[Segala, 1995] Segala, R. (1995). Modeling and Verification of Randomized Distributed
Real-time Systems. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA. Not available from Univ. Microfilms Int.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5(2):285–309.

[Wachter, 2011] Wachter, B. (2011). Refined Probabilistic Abstraction. PhD thesis,
Universität des Saarlandes.

[Wachter et al., 2007] Wachter, B., Zhang, L., and Hermanns, H. (2007). Probabilistic
Model Checking Modulo Theories. In QEST, pages 129–140.

137

	Introduction
	Motivation
	State Space Explosion Problem
	Outline

	Preliminaries
	Probabilistic Models
	Probability Distribution
	Discrete-Time Markov Chain
	Probability Measure for DTMCs
	Reachability Probability
	Probabilistic Automata
	Minimal and Maximal Reachability Probabilities
	The Prism Modelling Language
	Stochastic Games

	Abstraction
	Relating Concrete and Abstract Domain
	Relating Concrete and Abstract Valuation Transformers
	Game-based Abstraction
	Predicate Abstraction

	Multi-Terminal Binary Decision Diagrams
	Concept
	Operations

	Satisfiability Modulo Theories

	Symbolical Model Checking with Menu-games
	Menu-based Abstraction
	Concept
	Menu-game as Implementation of Menu-based Abstraction

	Representing Menu-games via MTBDDs
	Construction of Menu-games from Probabilistic Programs
	Logical Characterisation of Concrete Semantics
	Logical Characterisation of Abstract Semantics
	Logical Characterisation of Menu-games
	Construction Algorithm
	Reachable State Space

	Solving Menu-games
	Symbolical Value Iteration
	Symbolical Valuation Transformer Application

	Backward Refinement
	Pivot Blocks
	Deriving Refinement Predicates
	Backward Refinement Procedure
	Deriving Strategies Symbolically
	Computing Pivot Blocks Symbolically

	Optimisation Opportunities
	Optimising Abstraction
	Asserting Variable Ranges
	Exploiting Incrementality
	Relevant Predicates Optimisation
	Expression Decomposition
	Unrelated Commands
	Reachable State Space as Constraint

	Optimising Value Iteration
	Static Pre-computation of Reachability
	Reusing Previous Reachability Values
	Pivot-picking Policies
	Strategy-reachable Pivot Blocks
	Removing Goal Successors

	Symbolical Backward Refinement in Practice
	Implementation Details
	Overview of Case Studies
	Evaluation
	Abstraction and Construction
	Probabilistic Reachability Analysis
	Symbolic vs. Explicit Memory Usage
	Pivot-picking Policies
	Storm vs. Pass

	Assume-guarantee Style Extension for Menu-games
	Composition of Probabilistic Automata
	Composition of Menu-games
	Assume-guarantee Rule

	Conclusion
	Summary & Evaluation
	Future Work
	Appendix
	Assume-guarantee Proof
	Raw Evaluation Data
	Crowds Protocol
	Randomised Consensus Shared Coin Protocol
	Asynchronous Leader Election Protocol
	Wireless LAN Protocol
	Memory Usage
	Storm vs. Pass

	Case Studies and Properties
	Crowds Protocol
	Randomised Consensus Shared Coin Protocol
	Asynchronous Leader Election Protocol
	Wireless LAN Protocol

	Bibliography

