Accelerating Predicate Abstraction for Probabilistic Automata

Dimitri Bohlender

RWTH Aachen University

September 12, 2014 / Master Thesis Presentation

Outline

Motivation

Why Model Checking?

Outline

Motivation

Why Model Checking?

• testing cannot prove absence of bugs

Why Model Checking?

- testing cannot prove absence of bugs
- formal proof

Outline

Motivation

Why Model Checking?

- testing cannot prove absence of bugs
- formal proof

Properties

eventually a collision free transmission occurs

Outline

Motivation

Why Model Checking?

- testing cannot prove absence of bugs
- formal proof

Properties

- eventually a collision free transmission occurs
- no collision ever occurs

Outline

Motivation

Why Model Checking?

- testing cannot prove absence of bugs
- formal proof

Why Probabilistic Model Checking?

Properties

- eventually a collision free transmission occurs
- no collision ever occurs

Motivation

Why Model Checking?

- testing cannot prove absence of bugs
- formal proof

Why Probabilistic Model Checking?

Verification of probabilistic models, e.g. network protocols

Properties

- eventually a collision free transmission occurs
- no collision ever occurs

Why Model Checking?

- testing cannot prove absence of bugs
- formal proof

Why Probabilistic Model Checking?

Verification of probabilistic models, e.g. network protocols

Properties

- eventually a collision free transmission occurs
- no collision ever occurs
- \bullet probability for a collision is below 5%

D. Bohlender

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

⇒ construction & analysis often infeasible (memory & time constraints)

D. Bohlender **RWTH Aachen University**

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

⇒ construction & analysis often infeasible (memory & time constraints)

Observation

Model often more detailed than necessary to check property of interest

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

⇒ construction & analysis often infeasible (memory & time constraints)

Observation

Model often more detailed than necessary to check property of interest

Approaches

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

⇒ construction & analysis often infeasible (memory & time constraints)

Observation

Model often more detailed than necessary to check property of interest

Approaches

analyse over-approximating, abstract model instead

D. Bohlender

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

⇒ construction & analysis often infeasible (memory & time constraints)

Observation

Model often more detailed than necessary to check property of interest

Approaches

analyse over-approximating, abstract model instead (Menu-game)

D. Bohlender **RWTH Aachen University**

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

⇒ construction & analysis often infeasible (memory & time constraints)

Observation

Model often more detailed than necessary to check property of interest

Approaches

- analyse over-approximating, abstract model instead (Menu-game)
- use space-efficient, symbolic data structures

Outline

Motivation

State Space Explosion

Even "simple" system descriptions yield huge state spaces

⇒ construction & analysis often infeasible (memory & time constraints)

Observation

Model often more detailed than necessary to check property of interest

Approaches

- analyse over-approximating, abstract model instead (Menu-game)
- use space-efficient, symbolic data structures (BDD)

Optimisations

- 1 Probabilistic Models and Symbolic Representation
- Symbolic Backward Refinement

Preliminaries

- Optimisations
- 4 Evaluation
- Conclusion

Probabilistic Automaton (Example)

Probabilistic Reachability

 \bullet reachability depends on strategy σ of resolving non-determinism

$$Pr_{\mathcal{A}}^{\sigma}(\lozenge G)$$

Motivation

Probabilistic Automaton (Example)

Probabilistic Reachability

ullet reachability depends on strategy σ of resolving non-determinism

$$Pr_{\mathcal{A}}^{\sigma}(\lozenge G)$$

Outline

Probabilistic Reachability

 \bullet reachability depends on strategy σ of resolving non-determinism

$$Pr_{\mathcal{A}}^{\sigma}(\lozenge G)$$

fixed point characterisation of extremal probabilities

D. Bohlender

Motivation

Probabilistic Reachability

ullet reachability depends on strategy σ of resolving non-determinism

$$Pr_{\mathcal{A}}^{\sigma}(\lozenge G)$$

• fixed point characterisation of extremal probabilities

Motivation

Optimisations

Probabilistic Automaton (Example)

Probabilistic Reachability

 \bullet reachability depends on strategy σ of resolving non-determinism

$$Pr_{\mathcal{A}}^{-}(\lozenge G) \leq Pr_{\mathcal{A}}^{\sigma}(\lozenge G)$$

fixed point characterisation of extremal probabilities

Probabilistic Reachability

 \bullet reachability depends on strategy σ of resolving non-determinism

$$Pr_{\mathcal{A}}^{-}(\lozenge \mathbf{G}) \leq Pr_{\mathcal{A}}^{\sigma}(\lozenge \mathbf{G}) \leq Pr_{\mathcal{A}}^{+}(\lozenge \mathbf{G})$$

• fixed point characterisation of extremal probabilities

Motivation

Probabilistic Reachability

 \bullet reachability depends on strategy σ of resolving non-determinism

$$Pr_{\mathcal{A}}^{-}(\lozenge G) \le Pr_{\mathcal{A}}^{\sigma}(\lozenge G) \le Pr_{\mathcal{A}}^{+}(\lozenge G)$$

fixed point characterisation of extremal probabilities

Optimisations

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```

 \rightarrow (0, -1) Legend: (phase, run)

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


Legend: (phase, run)

Optimisations

Probabilistic Program (Example)

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


Motivation

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


Motivation

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


Optimisations

Legend: (phase, run)

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```



```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```



```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```



```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 : (phase '=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


Optimisations

Probabilistic Program (Example)

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 :(phase'=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


Motivation

Optimisations

Probabilistic Program (Example)

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 :(phase'=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


Probabilistic Program (Example)

```
module simple
    // O=init. 1=running.
    // 2=finished, 3=broken
    phase : [0..3];
    run : int:
    [a] phase=0
        -> 1.0 :(run'=2) & (phase'=1);
    [b] phase=1 & run>0
        -> 0.97:(run'=run-1)
         + 0.03:(phase'=3);
    [c] phase=1 & run<=0
        -> 1.0 :(phase'=2);
endmodule
init
    phase=0 & run=-1:
endinit
```


D. Bohlender RWTH Aachen University

Preliminaries

00000

Probabilistic Reachability

Reachability probability $Pr_{\mathcal{G}}^{\sigma_{1},\sigma_{2}}\left(\lozenge G\right)$ depends on strategy-pair (σ_{1},σ_{2})

D. Bohlender RWTH Aachen University

Outline

Probabilistic Reachability

Reachability probability $Pr_{\mathcal{G}}^{\sigma_1,\sigma_2}\left(\lozenge G\right)$ depends on strategy-pair (σ_1,σ_2)

Extremal probabilities

Outline

Probabilistic Reachability

Reachability probability $Pr_{\mathcal{G}}^{\sigma_1,\sigma_2}\left(\lozenge G\right)$ depends on strategy-pair (σ_1,σ_2)

Extremal probabilities

$$Pr_{\mathcal{G}}^{-,-}\left(\Diamond G\right)$$

D. Bohlender

Outline

Probabilistic Reachability

Reachability probability $Pr_{\mathcal{C}}^{\sigma_1,\sigma_2}(\lozenge G)$ depends on strategy-pair (σ_1,σ_2)

Extremal probabilities

$$Pr_{\mathcal{G}}^{-,-}\left(\lozenge G\right)$$

$$Pr_{\mathcal{G}}^{-,-}(\lozenge G) \qquad Pr_{\mathcal{G}}^{-,+}(\lozenge G)$$

D. Bohlender

Outline

Probabilistic Reachability

Reachability probability $Pr_{\mathcal{C}}^{\sigma_1,\sigma_2}(\lozenge G)$ depends on strategy-pair (σ_1,σ_2)

Extremal probabilities

$$Pr_{\mathcal{G}}^{-,-}(\lozenge G) \qquad Pr_{\mathcal{G}}^{-,+}(\lozenge G) Pr_{\mathcal{G}}^{-,-}(\lozenge G)$$

D. Bohlender

Outline

Probabilistic Reachability

Reachability probability $Pr_{\mathcal{G}}^{\sigma_1,\sigma_2}\left(\lozenge G\right)$ depends on strategy-pair (σ_1,σ_2)

Extremal probabilities

$$Pr_{\mathcal{G}}^{-,-}(\lozenge G) \qquad Pr_{\mathcal{G}}^{-,+}(\lozenge G)$$

$$Pr_{\mathcal{G}}^{+,-}(\lozenge G)$$
 $Pr_{\mathcal{G}}^{+,+}(\lozenge G)$

D. Bohlender

Motivation

Observation

Outline

In practice, state spaces exhibit symmetries

Conclusion

MTBDD

Motivation

Observation

Outline

In practice, state spaces exhibit symmetries

 \Rightarrow exploit by employing symbolical representation

D. Bohlender RWTH Aachen University

Preliminaries Symbolic Backward Refinement Optimisations Evaluation

MTBDD

Motivation

Observation

Outline

In practice, state spaces exhibit symmetries

⇒ exploit by employing symbolical representation

Multi-Terminal Binary Decision Diagram

DAG $\mathfrak D$ representing a function $f_{\mathfrak D}:\mathbb B^n o \mathbb R$ with finite range

D. Bohlender RWTH Aachen University

Conclusion

Motivation

Observation

Outline

In practice, state spaces exhibit symmetries

⇒ exploit by employing symbolical representation

Multi-Terminal Binary Decision Diagram

DAG \mathfrak{D} representing a function $f_{\mathfrak{D}}: \mathbb{B}^n \to \mathbb{R}$ with finite range

Motivation

Observation

Outline

In practice, state spaces exhibit symmetries

⇒ exploit by employing symbolical representation

Multi-Terminal Binary Decision Diagram

DAG \mathfrak{D} representing a function $f_{\mathfrak{D}}: \mathbb{B}^n \to \mathbb{R}$ with finite range

x_1	x_2	x_3	$f_{\mathfrak{D}}$
0	0	0	0
0	0	1	0
0	1	0	0.5
0	1	1	1
1	0	0	0.5
1	0	1	1
1	1	0	0
1	1	1	0

Motivation

Observation

Outline

In practice, state spaces exhibit symmetries

⇒ exploit by employing symbolical representation

Multi-Terminal Binary Decision Diagram

DAG \mathfrak{D} representing a function $f_{\mathfrak{D}}: \mathbb{B}^n \to \mathbb{R}$ with finite range

x_1	x_2	x_3	$f_{\mathfrak{D}}$
0	0	0	0
0	0	1	0
0	1	0	0.5
0	1	1	1
1	0	0	0.5
1	0	1	1
1	1	0	0
1	1	1	0

Motivation

Stochastic Game as MTBDD (Example)

D. Bohlender RWTH Aachen University

Optimisations

Stochastic Game as MTBDD (Example)

Encoding Excerpt

$$\delta(s_0, b, o_1, u_\tau, s_2) = 1.0$$

Outline

Optimisations

Stochastic Game as MTBDD (Example)

Encoding Excerpt

$$\delta(s_0, b, o_1, u_\tau, s_2) = 1.0$$

Outline

Partition Abstraction

Partition PA's state space S into blocks Q:

$$S = \biguplus_{B \in Q} B$$

Menu-game: Concept

Partition Abstraction

Partition PA's state space S into blocks Q:

$$S = \biguplus_{B \in Q} B$$

Non-determinism of Model & Abstraction

- merge non-determinism
- distinguish non-determinism

Menu-game: Concept

Partition Abstraction

Partition PA's state space S into blocks Q:

$$S = \biguplus_{B \in Q} B$$

Non-determinism of Model & Abstraction

- merge non-determinism ⇒ yields PA
- distinguish non-determinism

Partition Abstraction

Partition PA's state space S into blocks Q:

$$S = \biguplus_{B \in Q} B$$

Non-determinism of Model & Abstraction

- ullet merge non-determinism \Rightarrow yields PA
- distinguish non-determinism ⇒ yields a SG

Outline

Partition Abstraction

Partition PA's state space S into blocks Q:

$$S = \biguplus_{B \in Q} B$$

Non-determinism of Model & Abstraction

- merge non-determinism ⇒ yields PA
- ullet distinguish non-determinism \Rightarrow yields a SG

Over-approximation

[Wachter, 2011]

$$Pr_{\mathcal{G}}^{-,-}(\lozenge G^{\#}) \leq Pr_{\mathcal{A}}^{-}(\lozenge G) \leq Pr_{\mathcal{G}}^{-,+}(\lozenge G^{\#})$$

Partition Abstraction

Partition PA's state space S into blocks Q:

$$S = \biguplus_{B \in Q} B$$

Non-determinism of Model & Abstraction

- merge non-determinism ⇒ yields PA
- ullet distinguish non-determinism \Rightarrow yields a SG

Over-approximation

[Wachter, 2011]

$$Pr_{\mathcal{G}}^{-,-}\left(\lozenge G^{\#}\right) \leq Pr_{\mathcal{A}}^{-}\left(\lozenge G\right) \leq Pr_{\mathcal{G}}^{-,+}\left(\lozenge G^{\#}\right)$$

 $Pr_{\mathcal{G}}^{+,-}\left(\lozenge G^{\#}\right) \leq Pr_{\mathcal{A}}^{+}\left(\lozenge G\right) \leq Pr_{\mathcal{G}}^{+,+}\left(\lozenge G^{\#}\right)$

Outline

Outline

Optimisations

Conclusion

Backward Refinement Scheme

12 / 35

Outline

Conclusion

12 / 35

Conclusion

Menu-game: Construction from PA (Example)

Preliminaries

Optimisations

Optimisations

Motivation

Conclusion

Menu-game: Construction from PA (Example)

Optimisations

Menu-game: Predicate Abstraction

Predicate

Boolean expression over a program's variables

Menu-game: Predicate Abstraction

Predicate

Boolean expression over a program's variables

Predicates induce partitioning

$$\mathcal{P} = \{phase = 0, phase = 1, phase = 2, phase = 3, run > 0\}$$

Conclusion

Menu-game: Predicate Abstraction

Predicate

Boolean expression over a program's variables

Predicates induce partitioning

$$\mathcal{P} = \{phase = 0, phase = 1, phase = 2, phase = 3, run > 0\}$$

induces the partition:

$$\circ phase = 0$$

$$phase = 1, run > 0$$

$$ophase = 1$$

$$phase = 2, run > 0$$

•
$$phase = 3, run > 0$$

Refinement

Outline

Motivation

Idea

Split pivot blocks, which introduce imprecision

D. Bohlender

Idea

Split *pivot blocks*, which introduce imprecision

Observations

 deviation alone does not indicate a block being pivot

D. Bohlender

Refinement

Idea

Split *pivot blocks*, which introduce imprecision

Observations

- deviation alone does not indicate a block being pivot
- ⇒ differing player 2 strategies do

Idea

Split *pivot blocks*, which introduce imprecision

Observations

- deviation alone does not indicate a block being pivot
- ⇒ differing player 2 strategies do

Refinement Predicates

 derived from update leading to different blocks

Refinement

Idea

Split *pivot blocks*, which introduce imprecision

Observations

- deviation alone does not indicate a block being pivot
- ⇒ differing player 2 strategies do

Refinement Predicates

- derived from update leading to different blocks
- ⇒ splitting corresponding behaviours

Reminder

Motivating SMT-based Construction

D. Bohlender RWTH Aachen University

Motivating SMT-based Construction

D. Bohlender RWTH Aachen University

Consider

[a]
$$x > 0 \rightarrow 0.7$$
: $(x' = x + 1) + 0.3$: $(y' = x)$

$$\mathcal{P} = \{x \text{ is odd}, y \text{ is odd}\}$$

Consider

Motivation

[a]
$$x > 0 \rightarrow 0.7$$
: $(x' = x + 1) + 0.3$: $(y' = x)$

$$\mathcal{P} = \{x \text{ is odd}, y \text{ is odd}\}$$

Preliminaries

Consider

[a]
$$x > 0 \rightarrow 0.7$$
: $(x' = x + 1) + 0.3$: $(y' = x)$

$$\mathcal{P} = \{x \text{ is odd}, y \text{ is odd}\}$$

$$\land (b_0^{src} \Leftrightarrow x \text{ is odd}) \land (b_1^{src} \Leftrightarrow y \text{ is odd})$$

Consider

Motivation

[a]
$$x > 0 \rightarrow 0.7$$
: $(x' = x + 1) + 0.3$: $(y' = x)$

$$\mathcal{P} = \{x \text{ is odd}, y \text{ is odd}\}$$

$$\land (b_0^{src} \Leftrightarrow x \text{ is odd}) \land (b_1^{src} \Leftrightarrow y \text{ is odd})$$

$$\wedge \; \left(b_0^{dst_1} \Leftrightarrow x+1 \text{ is odd}\right) \wedge \left(b_1^{dst_1} \Leftrightarrow y \text{ is odd}\right)$$

Consider

[a]
$$x > 0 \rightarrow 0.7$$
: $(x' = x + 1) + 0.3$: $(y' = x)$

$$\mathcal{P} = \{x \text{ is odd}, y \text{ is odd}\}$$

$$\land (b_0^{src} \Leftrightarrow x \text{ is odd}) \land (b_1^{src} \Leftrightarrow y \text{ is odd})$$

$$\wedge \ (b_0^{dst_1} \Leftrightarrow x+1 \text{ is odd}) \wedge (b_1^{dst_1} \Leftrightarrow y \text{ is odd})$$

$$\wedge (b_0^{dst_2} \Leftrightarrow x \text{ is odd}) \wedge (b_1^{dst_2} \Leftrightarrow x \text{ is odd})$$

Consider

[a]
$$x > 0 \rightarrow 0.7$$
: $(x' = x + 1) + 0.3$: $(y' = x)$

 $\mathcal{P} = \{x \text{ is odd}, y \text{ is odd}\}$

Abstract Transition Constraint

$$\land (b_0^{src} \Leftrightarrow x \text{ is odd}) \land (b_1^{src} \Leftrightarrow y \text{ is odd})$$

$$\wedge (b_0^{dst_1} \Leftrightarrow x+1 \text{ is odd}) \wedge (b_1^{dst_1} \Leftrightarrow y \text{ is odd})$$

$$\land (b_0^{dst_2} \Leftrightarrow x \text{ is odd}) \land (b_1^{dst_2} \Leftrightarrow x \text{ is odd})$$

Interpretation

- \bullet $(b_0^{src}, b_1^{src}) = (1, 0)$
- \bullet $(b_0^{dst_1}, b_1^{dst_1}) = (0, 0)$
- \bullet $(b_0^{dst_2}, b_1^{dst_2}) = (1, 1)$

Consider

Motivation

[a]
$$x > 0 \rightarrow 0.7$$
: $(x' = x + 1) + 0.3$: $(y' = x)$

 $\mathcal{P} = \{x \text{ is odd}, y \text{ is odd}\}$

Abstract Transition Constraint

$$\land (b_0^{src} \Leftrightarrow x \text{ is odd}) \land (b_1^{src} \Leftrightarrow y \text{ is odd})$$

$$\wedge (b_0^{dst_1} \Leftrightarrow x+1 \text{ is odd}) \wedge (b_1^{dst_1} \Leftrightarrow y \text{ is odd})$$

$$\land (b_0^{dst_2} \Leftrightarrow x \text{ is odd}) \land (b_1^{dst_2} \Leftrightarrow x \text{ is odd})$$

Interpretation

- \bullet $(b_0^{src}, b_1^{src}) = (1, 0)$
- \bullet $(b_0^{dst_1}, b_1^{dst_1}) = (0, 0)$
- \bullet $(b_0^{dst_2}, b_1^{dst_2}) = (1, 1)$

Outline

Observation

Motivation

Observation

Commands are often only related to a subset of all predicates

 $\mathcal{P}_{u_j}^{src}$ indicate the (in)validity of predicates in the successor B_j

Observation

Commands are often only related to a subset of all predicates

 $\mathcal{P}_{u_j}^{src}$ indicate the (in)validity of predicates in the successor B_j , e.g. share variable with assignment

D. Bohlender RWTH Aachen University

Observation

Motivation

- $\mathcal{P}_{u_j}^{src}$ indicate the (in)validity of predicates in the successor B_j , e.g. share variable with assignment
- $\mathcal{P}_{u_j}^{dst}$ whose validity in successor blocks may be affected by u_j

Optimisations

·00000

Relevant Predicates

Outline

Observation

- $\mathcal{P}_{u_j}^{src}$ indicate the (in)validity of predicates in the successor B_j , e.g. share variable with assignment
- $\mathcal{P}_{u_j}^{dst}$ whose validity in successor blocks may be affected by u_j , e.g. contain assignment variable.

Observation

- $\mathcal{P}_{u_j}^{src}$ indicate the (in)validity of predicates in the successor B_j , e.g. share variable with assignment
- $\mathcal{P}_{u_j}^{dst}$ whose validity in successor blocks may be affected by u_j , e.g. contain assignment variable.
- \Rightarrow irrelevant destination predicates retain their value

Motivation

Relevant Predicates

Observation

Commands are often only related to a subset of all predicates

- $\mathcal{P}_{u_j}^{src}$ indicate the (in)validity of predicates in the successor B_j , e.g. share variable with assignment
- $\mathcal{P}_{u_j}^{dst}$ whose validity in successor blocks may be affected by u_j , e.g. contain assignment variable.
- ⇒ irrelevant destination predicates retain their value

[a]
$$x > 0 \to 0.7 : (x' = x + 1) + 0.3 : (y' = x)$$

$$x > 0 \land (b_0^{src} \Leftrightarrow x \text{ is odd}) \land (b_1^{src} \Leftrightarrow y \text{ is odd})$$

$$\wedge \ (b_0^{dst_1} \Leftrightarrow x+1 \text{ is odd}) \wedge (b_1^{dst_1} \Leftrightarrow y \text{ is odd})$$

$$\wedge \ (b_0^{dst_2} \Leftrightarrow x \text{ is odd}) \wedge (b_1^{dst_2} \Leftrightarrow x \text{ is odd})$$

Observation

Motivation

Commands are often only related to a subset of all predicates

- $\mathcal{P}_{u_j}^{src}$ indicate the (in)validity of predicates in the successor B_j , e.g. share variable with assignment
- $\mathcal{P}_{u_j}^{dst}$ whose validity in successor blocks may be affected by u_j , e.g. contain assignment variable.
- ⇒ irrelevant destination predicates retain their value

$$\begin{split} [a] \ x > 0 &\to 0.7 : (x' = x + 1) + 0.3 : (y' = x) \\ x > 0 \ \land \ (b_0^{src} \Leftrightarrow x \text{ is odd}) \land (b_1^{src} \Leftrightarrow y \text{ is odd}) \\ &\land \ (b_0^{dst_1} \Leftrightarrow x + 1 \text{ is odd}) \land (b_1^{dst_1} \Leftrightarrow y \text{ is odd}) \\ &\land \ (b_0^{dst_2} \Leftrightarrow x \text{ is odd}) \land (b_1^{dst_2} \Leftrightarrow x \text{ is odd}) \end{split}$$

Observation

Motivation

Commands are often only related to a subset of all predicates

- $\mathcal{P}_{u_{j}}^{src}$ indicate the (in)validity of predicates in the successor B_{j} , e.g. share variable with assignment
- $\mathcal{P}_{u_j}^{dst}$ whose validity in successor blocks may be affected by u_j , e.g. contain assignment variable.
- ⇒ irrelevant destination predicates retain their value

$$\begin{split} [a] \ x > 0 &\rightarrow 0.7 : (x' = x + 1) + 0.3 : (y' = x) \\ x > 0 \wedge \left(b_0^{src} \Leftrightarrow x \text{ is odd}\right) \wedge \left(b_1^{src} \Leftrightarrow y \text{ is odd}\right) \\ & \wedge \left(b_0^{dst_1} \Leftrightarrow x + 1 \text{ is odd}\right) \wedge \left(b_1^{dst_1} \Leftrightarrow y \text{ is odd}\right) \\ & \wedge \left(b_0^{dst_2} \Leftrightarrow x \text{ is odd}\right) \wedge \left(b_1^{dst_2} \Leftrightarrow x \text{ is odd}\right) \end{split}$$

Outline

Observation

Motivation

Commands are often only related to a subset of all predicates

- $\mathcal{P}_{u_i}^{src}$ indicate the (in)validity of predicates in the successor B_i , e.g. share variable with assignment
- $\mathcal{P}_{u_i}^{dst}$ whose validity in successor blocks may be affected by u_i , e.g. contain assignment variable.
- ⇒ irrelevant destination predicates retain their value

$$\begin{split} [a] \ x > 0 &\to 0.7 : (x' = x + 1) + 0.3 : (y' = x) \\ x > 0 \wedge (b_0^{src} \Leftrightarrow x \text{ is odd}) \wedge (b_1^{src} \Leftrightarrow y \text{ is odd}) \\ &\wedge (b_0^{dst_1} \Leftrightarrow x + 1 \text{ is odd}) \wedge (b_1^{dst_1} \Leftrightarrow y \text{ is odd}) \\ &\wedge (b_0^{dst_2} \Leftrightarrow x \text{ is odd}) \wedge (b_1^{dst_2} \Leftrightarrow x \text{ is odd}) \end{split}$$

Observation

Motivation

Commands are often only related to a subset of all predicates

- $\mathcal{P}_{u_{j}}^{src}$ indicate the (in)validity of predicates in the successor B_{j} , e.g. share variable with assignment
- $\mathcal{P}_{u_j}^{dst}$ whose validity in successor blocks may be affected by u_j , e.g. contain assignment variable.
- \Rightarrow irrelevant destination predicates retain their value

Simplify Transition Constraint

$$\begin{split} [a] \ x > 0 \to 0.7 : (x' = x + 1) + 0.3 : (y' = x) \\ x > 0 \wedge (b_0^{src} \Leftrightarrow x \text{ is odd}) \wedge (\underline{b_1^{src}} \Leftrightarrow y \text{ is odd}) \\ \wedge (b_0^{dst_1} \Leftrightarrow x + 1 \text{ is odd}) \wedge (\underline{b_1^{dst_1}} \Leftrightarrow y \text{ is odd}) \\ \wedge (\underline{b_0^{dst_2}} \Leftrightarrow x \text{ is odd}) \wedge (b_1^{dst_2} \Leftrightarrow x \text{ is odd}) \\ \Rightarrow \text{ extend solutions with } b_1^{src} \Leftrightarrow b_1^{dst_1} \text{ and } b_0^{src} \Leftrightarrow b_0^{dst_2} \end{split}$$

D. Bohlender

Observation

Outline

Motivation

Refinement can only split blocks but never introduce "new" ones

D. Bohlender RWTH Aachen University

Reachable Blocks as Constraint

Observation

Motivation

Refinement can only split blocks but never introduce "new" ones

⇒ new transition constraint solutions extend the old ones

Observation

Motivation

Refinement can only split blocks but never introduce "new" ones

⇒ new transition constraint solutions extend the old ones

New Solutions are Extensions

Let the old solution have only three source blocks:

$$(b_0^{src}, b_1^{src}, b_2^{src}) \in \{(0, 0, 1), (0, 1, 1), (1, 0, 0)\}$$

D. Bohlender

Reachable Blocks as Constraint

Observation

Motivation

Refinement can only split blocks but never introduce "new" ones

⇒ new transition constraint solutions extend the old ones

New Solutions are Extensions

Let the old solution have only three source blocks:

$$(b_0^{src}, b_1^{src}, b_2^{src}) \in \{(0, 0, 1), (0, 1, 1), (1, 0, 0)\}$$

Solutions $(b_0^{src}, b_1^{src}, b_2^{src}, b_3^{src})$ of refined constraint must extend those, i.e. be in

$$\{(0,0,1),(0,1,1),(1,0,0)\} \times \{0,1\}$$

Reachable Blocks as Constraint

Preliminaries

Observation

Refinement can only split blocks but never introduce "new" ones

⇒ new transition constraint solutions extend the old ones

New Solutions are Extensions

Let the old solution have only three source blocks:

$$(b_0^{src}, b_1^{src}, b_2^{src}) \in \{(0, 0, 1), (0, 1, 1), (1, 0, 0)\}$$

Solutions $(b_0^{src}, b_1^{src}, b_2^{src}, b_3^{src})$ of refined constraint must extend those, i.e. be in

$$\{(0,0,1),(0,1,1),(1,0,0)\}\times\{0,1\}$$

Idea

Extend transition constraint with reachable blocks constraints

Preliminaries

Variables' Ranges

⇒ extend constraint with variables' domains

Exploit Incrementality

Predicate Decomposition

Variables' Ranges

Motivation

- ⇒ extend constraint with variables' domains
- \bullet e.g. for $x \in \{0,1,2\}$ add $0 \le x \land x \le 2$

Exploit Incrementality

Predicate Decomposition

Variables' Ranges

Motivation

- ⇒ extend constraint with variables' domains
 - \bullet e.g. for $x \in \{0,1,2\}$ add $0 \le x \land x \le 2$
- **Exploit** incremental checking faster than starting from scratch

Predicate Decomposition

Variables' Ranges

- ⇒ extend constraint with variables' domains
- e.g. for $x \in \{0, 1, 2\}$ add $0 \le x \land x \le 2$
- **Exploit** Incrementality
- incremental checking faster than starting from scratch

Optimisations

000000

transition constraint grows monotonously

Predicate Decomposition

Variables' Ranges

Motivation

- ⇒ extend constraint with variables' domains
- \bullet e.g. for $x \in \{0,1,2\}$ add $0 \le x \land x \le 2$

Exploit Incrementality

- incremental checking faster than starting from scratch
- transition constraint grows monotonously
- \Rightarrow one SMT-solver instance for each command

Predicate Decomposition

Variables' Ranges

Motivation

- ⇒ extend constraint with variables' domains
- e.g. for $x \in \{0, 1, 2\}$ add $0 \le x \land x \le 2$

Exploit Incrementality

- incremental checking faster than starting from scratch
- transition constraint grows monotonously
- \Rightarrow one SMT-solver instance for each command

Predicate Decomposition

⇒ split spuriously coupled variables

Variables' Ranges

Motivation

- ⇒ extend constraint with variables' domains
- e.g. for $x \in \{0,1,2\}$ add $0 \le x \land x \le 2$

Exploit Incrementality

- incremental checking faster than starting from scratch
- transition constraint grows monotonously
- \Rightarrow one SMT-solver instance for each command

Predicate Decomposition

- ⇒ split spuriously coupled variables
- e.g. $\{x = 1 \land y > 0\}$ becomes $\{x = 1, y > 0\}$

Variables' Ranges

- ⇒ extend constraint with variables' domains
 - e.g. for $x \in \{0,1,2\}$ add $0 \le x \land x \le 2$

Exploit Incrementality

- incremental checking faster than starting from scratch
- transition constraint grows monotonously
- \Rightarrow one SMT-solver instance for each command

Predicate Decomposition

- ⇒ split spuriously coupled variables
- e.g. $\{x = 1 \land y > 0\}$ becomes $\{x = 1, y > 0\}$

Unrelated Commands

new predicate often not relevant for all commands

Variables' Ranges

Motivation

- ⇒ extend constraint with variables' domains
 - e.g. for $x \in \{0,1,2\}$ add $0 \le x \land x \le 2$

Exploit Incrementality

- incremental checking faster than starting from scratch
- transition constraint grows monotonously
- \Rightarrow one SMT-solver instance for each command

Predicate Decomposition

- ⇒ split spuriously coupled variables
- e.g. $\{x = 1 \land y > 0\}$ becomes $\{x = 1, y > 0\}$

- new predicate often not relevant for all commands
- ⇒ reuse previous solutions

Pre-computation

Outline

Motivation

Observations

ullet value iteration may not yield reachability probability to be exactly 1

D. Bohlender RWTH Aachen University

Evaluation

Conclusion

Pre-computation

Outline

Motivation

Observations

- ullet value iteration may not yield reachability probability to be exactly 1
- convergence to 0 or 1 may be slow

Observations

- ullet value iteration may not yield reachability probability to be exactly 1
- convergence to 0 or 1 may be slow

Idea

Motivation

Extend pre-computation algorithms for PA to Menu-games

Optimisations

000000

Conclusion

Pre-computation

Observations

- value iteration may not yield reachability probability to be exactly 1
- convergence to 0 or 1 may be slow

Idea

Extend pre-computation algorithms for PA to Menu-games

" σ_1 "	" σ_2 "	Prob0	Prob1
_	_	EE	AA
_	+		
+	_		
+	+		

Pre-computation

Observations

- value iteration may not yield reachability probability to be exactly 1
- convergence to 0 or 1 may be slow

Idea

Motivation

Extend pre-computation algorithms for PA to Menu-games

" σ_1 "	" σ_2 "	Prob0	Prob1
_	_	EE	AA
_	+	$\mathrm{E}\mathrm{A}$	AE
+	_		
+	+		

Observations

- ullet value iteration may not yield reachability probability to be exactly 1
- convergence to 0 or 1 may be slow

Preliminaries

Idea

Extend pre-computation algorithms for PA to Menu-games

" σ_1 "	" σ_2 "	Prob0	Prob1
_	_	EE	AA
_	+	EA	AE
+	_	AE	EA
+	+		

Observations

- ullet value iteration may not yield reachability probability to be exactly 1
- convergence to 0 or 1 may be slow

Preliminaries

Idea

Motivation

Extend pre-computation algorithms for PA to Menu-games

" σ_1 "	" σ_2 "	Prob0	Prob1
_	_	EE	AA
_	+	EA	AE
+	_	AE	EA
+	+	AA	EE

Observations

- ullet value iteration may not yield reachability probability to be exactly 1
- convergence to 0 or 1 may be slow

Idea

Motivation

Extend pre-computation algorithms for PA to Menu-games

" σ_1 "	" σ_2 "	Prob0	Prob1
_	_	EE	AA
_	+	EA	AE
+	_	AE	EA
+	+	AA	EE

PROB1EA (Example)

Preliminaries

PROB1EA (Example)

PROB1EA (Example)

Preliminaries

Evaluation

PROB1EA (Example)

Preliminaries

PROB1EA (Example)

PROB1EA (Example)

D. Bohlender

RWTH Aachen University

PROB1EA (Example)

Conclusion

PROB1EA (Example)

Blocks

 B_0, B_2, B_3, B_4, B_5

 B_5

PROB1EA (Example)

Blocks

 B_0, B_2, B_3, B_4, B_5

 B_5

PROB1EA (Example)

PROB1EA (Example)

 $\begin{array}{ccc} \text{Set} & \text{Blocks} \\ \hline maybe & B_0, B_2, B_3, B_4, B_5 \\ yes & B_5 \end{array}$

Blocks

 B_5

PROB1EA (Example)

Blocks

 B_0, B_2, B_3, B_4, B_5

 B_4, B_5

PROB1EA (Example)

PROB1EA (Example)

 $\begin{array}{ccc} \text{Set} & \text{Blocks} \\ \hline \textit{maybe} & B_0, B_2, B_3, B_4, B_5 \\ \textit{yes} & B_4, B_5 \end{array}$

 $\begin{array}{ccc} \text{Set} & \text{Blocks} \\ maybe & B_0, B_2, B_3, B_4, B_5 \\ yes & B_4, B_5 \end{array}$

PROB1EA (Example)

Set	Blocks	
maybe	B_3, B_4, B_5	
ues	B_{5}	

Blocks

 B_3, B_4, B_5 B_5

PROB1EA (Example)

Set	Blocks	
maybe	B_3, B_4, B_5	
yes	B_5	

Set	Blocks	
maybe	B_3, B_4, B_5	
yes	B_4, B_5	

Evaluation

Blocks

 B_3, B_4, B_5 B_4, B_5

PROB1EA (Example)

Preliminaries

 $\begin{array}{ccc} \text{Set} & & \text{Blocks} \\ \hline \textit{maybe} & & B_3, B_4, B_5 \\ \textit{yes} & & B_4, B_5 \end{array}$

Blocks

 B_3, B_4, B_5 B_4, B_5

PROB1EA (Example)

Preliminaries

Motivation

PROB1EA (Example)

D. Bohlender

Other tweaks

Motivation

Reuse reachability

avoid starting value iteration from scratch

Remove goal transitions

Other tweaks

Reuse reachability

- avoid starting value iteration from scratch
- ⇒ reuse previous refinement iteration results (where applicable)

Remove goal transitions

Other tweaks

Outline

Motivation

Reuse reachability

- avoid starting value iteration from scratch
- ⇒ reuse previous refinement iteration results (where applicable)

Remove goal transitions

focus on probabilistic reachability

Outline

Motivation

Reuse reachability

- avoid starting value iteration from scratch
- reuse previous refinement iteration results (where applicable)

Remove goal transitions

- focus on probabilistic reachability
- irrelevant what happens once goal is reached

Reuse reachability

- avoid starting value iteration from scratch
- ⇒ reuse previous refinement iteration results (where applicable)

Remove goal transitions

- focus on probabilistic reachability
- irrelevant what happens once goal is reached
- ⇒ remove outgoing transitions of goal blocks

Outline

Motivation

Prototypical Implementation

ullet uses Storm 's parser, expressions and can use explicit value iteration

Prototypical Implementation

- \bullet uses Storm 's parser, expressions and can use explicit value iteration
- \bullet uses Z3 as $SmT\mbox{-solver}$ and CUDD as MTBDD-library

Motivation

Prototypical Implementation

- \bullet uses Storm 's parser, expressions and can use explicit value iteration
- \bullet uses Z3 as $SmT\mbox{-solver}$ and CUDD as MTBDD-library
- obstacles:
 - corner cases of backward refinement not documented

Prototypical Implementation

- \bullet uses STORM 's parser, expressions and can use explicit value iteration
- \bullet uses Z3 as Smt-solver and CUDD as MTBDD-library
- obstacles:
 - corner cases of backward refinement not documented
 - vague (to not existent) description of PASS's implementation details

D. Bohlender RWTH Aachen University

Motivation

Prototypical Implementation

- uses Storm's parser, expressions and can use explicit value iteration
- uses Z3 as SMT-solver and CUDD as MTBDD-library
- obstacles:

Outline

- corner cases of backward refinement not documented
- vague (to not existent) description of PASS's implementation details
- standard MTBDD operations not sufficient for strategy computation

D. Bohlender **RWTH Aachen University**

Motivation

Prototypical Implementation

- \bullet uses STORM 's parser, expressions and can use explicit value iteration
- \bullet uses Z3 as Smt-solver and CUDD as MTBDD-library
- obstacles:
 - corner cases of backward refinement not documented
 - vague (to not existent) description of PASS's implementation details
 - standard MTBDD operations not sufficient for strategy computation
 - . . .

Prototypical Implementation

- \bullet uses STORM 's parser, expressions and can use explicit value iteration
- ullet uses Z3 as SmT-solver and CUDD as MTBDD-library
- obstacles:
 - corner cases of backward refinement not documented
 - vague (to not existent) description of PASS's implementation details
 - standard MTBDD operations not sufficient for strategy computation
 - . . .
- final implementation has ≈ 6000 lines of code (18.000 committed)

Motivation

Prototypical Implementation

- \bullet uses STORM 's parser, expressions and can use explicit value iteration
- ullet uses Z3 as SmT-solver and CUDD as MTBDD-library
- obstacles:
 - corner cases of backward refinement not documented
 - vague (to not existent) description of PASS's implementation details
 - standard MTBDD operations not sufficient for strategy computation
 - . . .
- final implementation has ≈ 6000 lines of code (18.000 committed)

Case Studies

• 4 case studies (focus on two here)

Motivation

Prototypical Implementation

- \bullet uses Storm 's parser, expressions and can use explicit value iteration
- \bullet uses Z3 as Smt-solver and CUDD as MTBDD-library
- obstacles:
 - corner cases of backward refinement not documented
 - vague (to not existent) description of PASS's implementation details
 - standard MTBDD operations not sufficient for strategy computation
 - . . .
- final implementation has ≈ 6000 lines of code (18.000 committed)

Case Studies

- 4 case studies (focus on two here)
- measured impact of optimisations on run time and game sizes

Outline

Motivation

Prototypical Implementation

- \bullet uses Storm 's parser, expressions and can use explicit value iteration
- \bullet uses Z3 as Smt-solver and CUDD as MTBDD-library
- obstacles:
 - corner cases of backward refinement not documented
 - vague (to not existent) description of PASS's implementation details
 - standard MTBDD operations not sufficient for strategy computation
 - . . .
- final implementation has ≈ 6000 lines of code (18.000 committed)

Case Studies

- 4 case studies (focus on two here)
- measured impact of optimisations on run time and game sizes
- evaluated symbolic vs. explicit analysis (memory usage & run time)

Consensus (Abstraction)

Consensus (Abstraction)

Outline

Motivation

Consensus (Analysis)

D. Bohlender RWTH Aachen University

WLAN (Abstraction)

Outline

Motivation

D. Bohlender RWTH Aachen University

WLAN (Abstraction)

Outline

D. Bohlender

Motivation

WLAN (Analysis)

Outline

Motivation

D. Bohlender

Evaluation

000000000

Symbolic vs. Explicit vs. PASS

Motivation

Summary

• Menu-game as over-approximation of a PA

Summary

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis

D. Bohlender

RWTH Aachen University

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory
 - MTBDD operations are the bottleneck

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory
 - MTBDD operations are the bottleneck
 - comparable to PASS

Optimisations

Conclusion

Conclusion

Summary

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory
 - MTBDD operations are the bottleneck
 - comparable to PASS

Future work

topological symbolic value iteration

34 / 35

Optimisations

Conclusion

Summary

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory
 - MTBDD operations are the bottleneck
 - comparable to PASS

Future work

- topological symbolic value iteration
- parallelisation

Motivation

Summary

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory
 - MTBDD operations are the bottleneck
 - comparable to PASS

Future work

- topological symbolic value iteration
- parallelisation
- restrictive refinement predicates (remove spurious blocks)

Summary

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory
 - MTBDD operations are the bottleneck
 - comparable to PASS

Future work

- topological symbolic value iteration
- parallelisation
- restrictive refinement predicates (remove spurious blocks)
- local refinement

Summary

- Menu-game as over-approximation of a PA
- several optimisations for both abstraction and analysis
- results:
 - proposed optimisations are crucial
 - symbolical approach slower but needs significantly less memory
 - MTBDD operations are the bottleneck
 - comparable to PASS

Future work

- topological symbolic value iteration
- parallelisation
- restrictive refinement predicates (remove spurious blocks)
- local refinement
- exploit modularity of probabilistic programs

D. Bohlender

Motivation

Outline

Thanks for your attention!

Interested in details? Suggestions?

D. Bohlender **RWTH Aachen University**